## Lecture 12: Network Verification

CS 234 / NetSys 210:Advanced Computer Networks
Sangeetha Abdu Jyothi



### Networks are so complex!



## Complex configurations

## Configs use many protocols & features

```
router bgp 16XX
                                                                                              no synchronization
                                             interface GigabitEthernet0/2
                                                                                              bgp log-neighbor-changes
                                             description conn to Backup Lightpath
                                                                                              network 64.X.X.0 mask 255.255.255.224
                                              ip address 65.X.X.66 255.255.255.240
version 12.4
service timestamps debug datetime msec
                                                                                               aggregate-address 64.X.X.0 255.255.255.0 summary-only
service timestamps log datetime msec
                                              ip nat outside
no service password-encryption
                                              ip virtual-reassembly
                                                                                               neighbor 64.X.X.2 remote-as 16XX
                                                                                               neighbor 64.X.X.2 next-hop-self
                                               duplex full
                                                                                               neighbor 65.X.1X.253 remote-as 2828
                                               speed 100
 hostname PrimaryR1
                                                                                                neighbor 65.X.X.253 route-map setLocalpref in
                                               media-type rj45
                                                                                                neighbor 65.X.X.253 route-map localonly out
                                               no negotiation auto
 boot-start-marker
  boot-end-marker
                                                                                                 no auto-summary
                                               interface GigabitEthernet0/3
                                               description LAN handoff from P2P to Denver
                                                ip address 10.30.0.1 255.254.0.0
                                                                                                 no ip http server
  no aaa new-model
                                                                                                  ip as-path access-list 10 permit ^$
                                                                                                 ip nat inside source list 101 interface GigabitEthernet0/2 overload
                                                 duplex auto
                                                 speed auto
                                                 media-type rj45
                                                  no negotiation auto
                                                                                                  access-list 101 permit ip any any
                                                                                                   access-list 150 permit ip any any
    interface Loopback100
                                                  interface Serial1/0
    no ip address
                                                  description p-2-p to Denver DC
                                                                                                   route-map setLocalpref permit 10
                                                  ip address 10.10.10.1 255.255.255.252
    interface GigabitEthernet0/1
                                                                                                   set local-preference 200
                                                   dsu bandwidth 44210
     description LAN port
     ip address 64.X.X.1 255.255.255.224
                                                   framing c-bit
                                                                                                    route-map localonly permit 10
                                                   cablelength 10
                                                                                                    match as-path 10
     ip nat inside
                                                    clock source internal
     ip virtual-reassembly
                                                    serial restart-delay 0
      duplex auto
                                                                                                     control-plane
      speed auto
                                                    interface Serial3/0
                                                    description DS3 XO WAN interface
      media-type rj45
                                                                                                      gatekeeper
                                                     ip address 65.X.X.254 255.255.255.252
      no negotiation auto
                                                                                                      shutdown
       standby 1 ip 64.X.X.5
                                                     ip access-group 150 in
       standby 1 priority 105
       standby 1 preempt delay minimum 60
                                                     encapsulation ppp
                                                                                                               Example basic BGP+HSRP config from
                                                     dsu bandwidth 44210
       standby 1 track Serial3/0
                                                                                                               https://www.myriadsupply.com/blog/?p=259
                                                      framing c-bit
                                                      cablelength 10
                                                      serial restart-delay 0
```

### Distributed Route Computation



### Networks are Difficult to Change

89% of operators never sure that config changes are bug-free

82% concerned that changes would cause problems with existing functionality

 Survey of network operators
 [Kim, Reich, Gupta, Shahbaz, Feamster, Clark, USENIX NSDI 2015]

### Simple Questions are Hard to Answer

- Which packets from A can reach B?
- Is Group X provably isolated from Group Y?
- Is the network causing poor performance or the server? Are QoS settings to blame?
- Why is my backbone utilization poor?
- Is my load balancer distributing evenly?
- Where are there mysterious packet losses?

### Network Correctness (a.k.a Intent)



### Intent Checklist

- All packets should follow the shortest paths
- There should not be any loops
- There should be multiple paths between A and D
- HTTP Packets in the subnet 10.0.2.0/24 should reach D
- External networks attached to A should be isolated from D except via HTTP

### Ensuring Correct Operations Before Network Verification

Manual spot-checking (pings, traceroutes)

Monitoring of events & flows



Screenshot from Scrutinizer NetFlow & sFlow analyzer, snmp.co.uk/scrutinizer/

### Network Verification

The process of proving whether an
 abstraction of the network satisfies
 the network-wide intent.

### Configuration Verification



### Data Plane Verification

Verify the network as close as possible to its actual behavior



## Data Plane Verification

### Data Plane Verification Benefits

Insensitive to control protocols

Accurate model

Checks current snapshot

### Data Plane Verification Architecture



### Debugging the Data Plane with Anteater [SIGCOMM'11]

- Express data plane and invariants as SAT
- Check with off-the-shelf SAT solver (Boolector)





### Data plane as boolean functions

- Define P(u, v) as the policy function for packets traveling from u to v
  - A packet can flow over (u, v) if and only if it satisfies P(u, v)



$$P(u, v) = dst_ip \in 10.1.1.0/24$$

### Some Examples



 $P(u, v) = dst_ip \in 10.1.1.0/24$  $\land dst_port \neq 80$ 

Packet filtering





Longest prefix matching

### Reachability as SAT solving

• Goal: reachability from u to w  $C = (P(u, v) \land P(v,w))$  is satisfiable



• SAT solver determines the satisfiability of C

### Anteater challenges

• Challenge #1: Obtaining real time view

• Challenge #2: Verify quickly

### Real-Time Data Plane Verification: Veriflow



## Verifying Invariants Quickly



- Limit the search space
- Represent forwarding behaviors using graphs
- Run Light-weight graph-based algorithm to check

### Real-time Verification with Veriflow



## Forwarding Graphs



ip dst [0, 167772671], tcp dst [0, 65535] ip dst [167772672, 167772927], tcp dst [80, 80] ip dst [167772928, 4294967295], tcp dst [0, 65535] ip dst [167772672, 167772927], tcp dst [0, 79] ip dst [167772672, 167772927], tcp dst [81, 65535]



### Intent API

- What intents can you check?
  - Anything within data plane state (forwarding rules)...
  - ...that can be verified incrementally
- Veriflow's API enables custom query algorithms
  - Full access to forwarding graph
  - For incremental verification: Gives access to the "diff": forwarding subgraph affected by an update from the SDN controller
  - Verification becomes a standard graph traversal algorithm

# Configuration Analysis

## Landscape of Approaches



### **Emulating Production Networks**



Image Reproduced from the authors' SOSP '17 paper

## Landscape of Approaches

|                   | Data Plane<br>Verification | Network<br>Emulation | Control plane simulation |
|-------------------|----------------------------|----------------------|--------------------------|
| Configuration     | Production                 | Input                | Input                    |
| Control software  |                            | Emulated             | Simulate a<br>model run  |
| Data plane state  | Input /<br>Verified        | Verified             | Verified                 |
| Packet processing | Abstracted                 | Abstracted           | Abstracted               |

### Control Plane Simulation

- Challenges in faithfully deriving the data plane
- Batfish [NSDI'15]
  - Approach: High-fidelity declarative model of control plane
    - Set of relations that expresses the network's control plane computation
    - Provides queryability and provenance for free

### Stage 1: Extract control plane model



### Stage 2: Compute data plane





## Stage 3: Data plane analysis



```
Counterexample of multipath consistency {

IngressNode=n1, Srclp=0.0.0.0, Dstlp=10.0.0.2, IpProtocol=0
}
```

### Stage 4: Helping Repair



# The Research Landscape

### Configuration Verification

Configuration

Control software

Data plane state

Packet processing

### Configuration verification

- RCC (Detecting BGP config faults w/static analysis)
   [Feamster & Balakrishnan, USENIX '05]
- ConfigAssure [Narain et al, '08]
- ConfigChecker [Al-Shaer, Marrero, El-Atawy, ICNP '09]
- Batfish [Fogel, Fung, Pedrosa, Walraed-Sullivan, Govindan, Mahajan, Millstein, NSDI'15]
- Bagpipe [Weitz, Woos, Torlak, Ernst, Krishnamurthy, Tatlock, NetPL'16 & 00PSLA'16]
- ARC [Gember-Jacobson, Viswanathan, Akella, Mahajan SIGCOMM'16]
- ERA [Fayaz, Sharma, Fogel, Mahajan, Millstein, Sekar, Varghese, OSDI'16]
- Minesweeper [Beckett, Gupta, Mahajan, Walker SIGCOMM'17]
- Plankton [Prabhu, Kheradmand, Godfrey, Caesar APNet'17]
- CrystalNet [Liu, Zhu, Padhye, Cao, Tallapragada, Lopes, Rybalchenko, Lu, Yuan SOSP'17]

### Control Software Verification

Configuration

Control software

Data plane state

Packet processing

### Verifiable controllers & control languages

- NICE [Canini, Venzano, Perešíni, Kostić, Rexford, NSDI'12]
- NetKAT [Anderson, Foster, Guha, Jeannin, Kozen, Schlesinger, Walker, POPL'14]
- Kinetic: Verifiable Dynamic Network Control [Kim, Gupta, Shahbaz, Reich, Feamster, Clark, NSDI'15]

### Data Plane Verification

Configuration

Control software

Data plane state

Packet processing

#### Static

- On static reachability in IP networks [Xie, Zhan, Maltz, Zhang, Greenberg, Hjalmtysson, Rexford, INFOCOM '05]
  - Computed reachable sets with IP forwarding rules
- FlowChecker [Al-Shaer, Al-Haj, SafeConfig '10]
- Anteater [Mai, Khurshid, Agarwal, Caesar, G., King, SIGCOMM'11]
- Header Space Analysis [Kazemian, Varghese, and McKeown, NSDI '12]
- Network-Optimized Datalog (NoD) [Lopes, Bjørner, Godefroid, Jayaraman, Varghese, NSDI 2015]

### Real time (incremental)

- VeriFlow [Khurshid, Zou, Zhou, Caesar, G., HotSDN'12, NSDI'13]
- NetPlumber [Kazemian, Chang, Zeng, Varghese, McKeown, Whyte, NSDI '13]
- CCG [Zhou, Jin, Croft, Caesar, G., NSDI'15]
- DeltaNet [Horn, Kheradmand, Prasad] NSDI'17]

#### Optimizations

- Libra: Divide and Conquer to Verify Forwarding Tables in Huge Networks [Zeng, Zhang, Ye, Google, Jeyakumar, Ju, Liu, McKeown, Vahdat, NSDI'14]
- Atomic Predicates [Yang, Lam, ToN'16]
- ddNF [Bjorner, Juniwal, Mahajan, Seshia, Varghese, HVC'16]

#### Richer data plane models

- SymNet [Stoenescu, Popovici, Negreanu, Raiciu, SIGCOMM'16]
- Mutable datapaths [Panda, Lahav, Argyraki, Sagiv, Shenker, NSDI'17]

### Packet Processing Verification

Configuration

Control software

Data plane state

Packet processing

# Verification of data plane software and data plane languages

- Software Dataplane Verification [Dobrescu, Argyraki, NSDI'14]
- Executable Formal Semantic of P4 and Applications [Kheradmand, Rosu, P4 Workshop'17]
- A Formally Verified NAT [Zaostrovnykh, Pirelli, Pedrosa, Argyraki, Candea, SIGCOMM'17]

# Thanks!