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Parts of this lecture were adapted from talks on Parameter Server, Horovod, and TicTac



Rapid Growth
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Datasets and Models are rapidly growing in size   ➡   Distributed training is necessary
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Distribution Patterns
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Training Process
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Popular Modes of Network Aggregation
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Parameter Server [OSDI’14]

• Goals

• Scale to industry-scale problems 

• billions of samples and features

• hundreds of machines

• Enable efficient communication

• Fault tolerance

• Easy to use
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Data and Model Partitioning
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Data and Model Partitioning
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Data and Model Partitioning
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Data and Model Partitioning
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Communication Operations
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Communication Operations
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Issue with Parameter Server

Even with distributed PS architecture, 

there can be network congestion at the parameter servers

Solution: Decentralized Aggregation
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Ring AllReduce - Decentralized Aggregation

14

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

W1

W2

W3

W4



Ring AllReduce
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Ring AllReduce
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Ring AllReduce
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Ring AllReduce
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Ring AllReduce
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Performance
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Performance
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AllReduce advantages

• Better performance

• More scalable

• Fits well with Torus topology 
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An issue with both PS and AllReduce

Compute under-utilization
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Understanding Compute Underutilization
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Blocked Computation

Waiting for Stragglers

Training can be accelerated through better communication-computation overlap
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Cause: Random Order of Parameter Transfers
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Update A• In this example, the computation cannot 
start until parameter A is received

• B, C, or D may be transferred before A, 
thereby blocking the computation 

• To make things worse, parameters that 
are updated last are consumed first



TicTac and P3 [MLSys’19] High-level idea

• Improve iteration time through better communication-computation overlap in 
Parameter Server based aggregation

• Achieved through parameter transfer scheduling
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Timing Independent Computation Scheduling
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• Uses DAG structure only

• Assign priorities based on the number 
of communication operations dependent 
on a given transfer

• In the e.g,  A has no other transfers 
dependent on it. Hence, it gets the 
highest priority

• B and C each have one dependency. 
Hence, the next priority

• D assigned lowest priority



Timing Aware Computation Scheduling
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• Uses DAG structure and time taken by each 
operation

• Reduce blocking on the critical path

• A assigned highest priority

• C is the next smallest blocking transfer

• Followed by B, then D



Limitations of Past Work

• Coupled with specific framework implementations,  
e.g., P3 for MXNet PS and TicTac for TensorFlow PS
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ByteScheduler [SOSP’19]

• Observation: The dependency graph structure is intrinsic for DNN training (regardless of 
training frameworks, communication architectures, or network protocols)

• ByteScheduler: A generic tensor scheduling framework for deep learning DAGs
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Unified Scheduler Across Frameworks
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CommTask: A Unified Abstraction

• CommTask:  A wrapped communication operation, e.g., push one tensor, allreduce one 
tensor 

• CommTask APIs implemented in framework plugins: 

• partition(size): partition a CommTask into SubCommTasks with tensors no larger 
than a threshold size 

• notify_ready(): notify Core about the readiness of a CommTask 

• start(): start a CommTask by calling the underlying push/pull/all-reduce 

• notify_finish(): notify Core about the completion of a CommTask
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Dependency Proxy: Get the Scheduling Control

• An operator to get the scheduling control from the frameworks to the Core
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Optimal Scheduling Theorem
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Other Research Directions / Challenges

• Training in Heterogeneous GPU/CPU Clusters

• Federated Machine Learning over the Wide Area Network

• In-Network Aggregation

• Topology adaptation for DNN training workloads
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Thanks!


