Lecture 13: Networking and Deep Learning

CS 234 / NetSys 210:Advanced Computer Networks
Sangeetha Abdu Jyothi

Rapid Growth

Datasets and Models are rapidly growing in size

Distributed training is necessary

Distribution Patterns

Popular Modes of Network Aggregation

Parameter Server

Decentralized Aggregation

Parameter Server [OSDI'14]

- Goals
 - Scale to industry-scale problems
 - billions of samples and features
 - hundreds of machines
 - Enable efficient communication
 - Fault tolerance
 - Easy to use

Training data

Communication Operations

Communication Operations

Issue with Parameter Server

Even with distributed PS architecture, there can be network congestion at the parameter servers

Solution: Decentralized Aggregation

Ring AllReduce - Decentralized Aggregation

Performance

Performance

AllReduce advantages

• Better performance

More scalable

• Fits well with Torus topology

An issue with both PS and AllReduce

Compute under-utilization

Understanding Compute Underutilization

Training can be accelerated through better communication-computation overlap

Inception v3
Data-Parallel with Parameter Server
TensorFlow
Mustang: CPU

Cause: Random Order of Parameter Transfers

- In this example, the computation cannot start until parameter A is received
- B, C, or D may be transferred before A, thereby blocking the computation
- To make things worse, parameters that are updated last are consumed first

TicTac and P3 [MLSys'19] High-level idea

• Improve iteration time through better communication-computation overlap in Parameter Server based aggregation

Achieved through parameter transfer scheduling

Timing Independent Computation Scheduling

- Uses DAG structure only
- Assign priorities based on the number of communication operations dependent on a given transfer
- In the e.g, A has no other transfers dependent on it. Hence, it gets the highest priority
- B and C each have one dependency.
 Hence, the next priority
- D assigned lowest priority

Timing Aware Computation Scheduling

- Uses DAG structure and time taken by each operation
- Reduce blocking on the critical path
- A assigned highest priority
- C is the next smallest blocking transfer
- Followed by B, then D

Limitations of Past Work

 Coupled with specific framework implementations, e.g., P3 for MXNet PS and TicTac for TensorFlow PS

Many different setups in distributed DNN training:

Communication architectures

Network protocols

ByteScheduler [SOSP'19]

• Observation: The dependency graph structure is intrinsic for DNN training (regardless of training frameworks, communication architectures, or network protocols)

• ByteScheduler: A generic tensor scheduling framework for deep learning DAGs

Unified Scheduler Across Frameworks

Plugin: Wrap each communication operation as a CommTask

Core: Partition and schedule CommTasks

CommTask: A Unified Abstraction

- CommTask: A wrapped communication operation, e.g., push one tensor, all reduce one tensor
- CommTask APIs implemented in framework plugins:
 - partition(size): partition a CommTask into SubCommTasks with tensors no larger than a threshold size
 - notify_ready(): notify Core about the readiness of a CommTask
 - start(): start a CommTask by calling the underlying push/pull/all-reduce
 - notify_finish(): notify Core about the completion of a CommTask

Dependency Proxy: Get the Scheduling Control

An operator to get the scheduling control from the frameworks to the Core

Optimal Scheduling Theorem

- For PS, prioritize $push_i$ over $push_j$, and $pull_i$ over $pull_j$, $\forall i < j$
- For all-reduce, prioritize $allreduce_i$ over $allreduce_i$, $\forall i < j$

Other Research Directions / Challenges

- Training in Heterogeneous GPU/CPU Clusters
- Federated Machine Learning over the Wide Area Network
- In-Network Aggregation
- Topology adaptation for DNN training workloads

Thanks!