
Lecture 13: Networking and Deep Learning
CS 234 / NetSys 210: Advanced Computer Networks

Sangeetha Abdu Jyothi

Parts of this lecture were adapted from talks on Parameter Server, Horovod, and TicTac

Rapid Growth

2

Datasets and Models are rapidly growing in size ➡ Distributed training is necessary

4

Distribution Patterns

3

Data Parallel /
Model Replica

W3

W2

W1

W4

Model Parallel Hybrid

Training Process

4

op1

op2 op3

op4

Input Data

op4’

op2’ op3’

op1’

Read B

Read A

Read C

Read D

Update D

Update CUpdate B

Update A

Fo
rw

ar
d

Pa
ss

Ba
ck

pr
op

ag
at

io
n

Popular Modes of Network Aggregation

5

W1 W2 W3 W4

PS

Parameter Server

W1

W2

W3

W4

Decentralized Aggregation

Parameter Server [OSDI’14]

• Goals

• Scale to industry-scale problems

• billions of samples and features

• hundreds of machines

• Enable efficient communication

• Fault tolerance

• Easy to use

6

Data and Model Partitioning

7

Data and Model Partitioning

8

Data and Model Partitioning

9

Data and Model Partitioning

10

Communication Operations

11

Communication Operations

12

Issue with Parameter Server

Even with distributed PS architecture,

there can be network congestion at the parameter servers

Solution: Decentralized Aggregation

13

Ring AllReduce - Decentralized Aggregation

14

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

W1

W2

W3

W4

Ring AllReduce

15

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

W1

W2

W3

W4

a0

b1c2

d3

Ring AllReduce

16

a0 a1 a2 d3 + a3

a0 + b0 b1 b2

c0 b1 + c1 c2 c3

d0 d1 c2 + d2 d3

W1

W2

W3

W4 b3

Ring AllReduce

17

a0 a1 a2 a3 + d3

a0 + b0 b1

c0 b1 + c1 c2 c3

d0 d1 c2 + d2 d3

W1

W2

W3

W4

a3 + d3

a0 + b0b1 + c1

c2 + d2

b2 b3

Ring AllReduce

18

a0 a1 a2 + c2 + d2 a3 + d3

a0 + b0 b1

a0 + b0 + c0 b1 + c1 c2 c3

d0 b1 + c1 + d1 c2 + d2 d3

W1

W2

W3

W4 b2 a3 + b3 + d3

Ring AllReduce

19

a0 + b0 + c0 + d0 a1 + b1 + c1 + d1 a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

W1

W2

W3

W4 a0 + b0 + c0 + d0 a1 + b1 + c1 + d1 a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

a0 + b0 + c0 + d0 a1 + b1 + c1 + d1 a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

a0 + b0 + c0 + d0 a1 + b1 + c1 + d1 a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

Performance

20

Performance

21

AllReduce advantages

• Better performance

• More scalable

• Fits well with Torus topology

22

An issue with both PS and AllReduce

Compute under-utilization

23

Understanding Compute Underutilization

24

W
or

ke
r 1

W
or

ke
r 2

W
or

ke
r 3

W
or

ke
r 4

Network

Compute

Network

Compute

Network

Compute

Network

Compute

Inception v3
Data-Parallel with Parameter Server
TensorFlow
Mustang: CPU

Blocked Computation

Waiting for Stragglers

Training can be accelerated through better communication-computation overlap

24

Cause: Random Order of Parameter Transfers

25

op1

op2 op3

op4

Input Data

Read B

Read A

op4’

op2’ op3’

op1’

Read C

Read D

Update D

Update CUpdate B

Update A• In this example, the computation cannot
start until parameter A is received

• B, C, or D may be transferred before A,
thereby blocking the computation

• To make things worse, parameters that
are updated last are consumed first

TicTac and P3 [MLSys’19] High-level idea

• Improve iteration time through better communication-computation overlap in
Parameter Server based aggregation

• Achieved through parameter transfer scheduling

26

Timing Independent Computation Scheduling

27

op1

op2 op3

op4

Input Data

Read B

Read A

Read C

Read D

1

2 2

3

• Uses DAG structure only

• Assign priorities based on the number
of communication operations dependent
on a given transfer

• In the e.g, A has no other transfers
dependent on it. Hence, it gets the
highest priority

• B and C each have one dependency.
Hence, the next priority

• D assigned lowest priority

Timing Aware Computation Scheduling

28

op1

op2 op3

op4

Input Data

Read B

Read A

Read C

Read D

tA = 1ms

tB = 2ms tC = 1ms

tD = 1ms

1

23

• Uses DAG structure and time taken by each
operation

• Reduce blocking on the critical path

• A assigned highest priority

• C is the next smallest blocking transfer

• Followed by B, then D

Limitations of Past Work

• Coupled with specific framework implementations,  
e.g., P3 for MXNet PS and TicTac for TensorFlow PS

29

ByteScheduler [SOSP’19]

• Observation: The dependency graph structure is intrinsic for DNN training (regardless of
training frameworks, communication architectures, or network protocols)

• ByteScheduler: A generic tensor scheduling framework for deep learning DAGs

30

Unified Scheduler Across Frameworks

31

CommTask: A Unified Abstraction

• CommTask: A wrapped communication operation, e.g., push one tensor, allreduce one
tensor

• CommTask APIs implemented in framework plugins:

• partition(size): partition a CommTask into SubCommTasks with tensors no larger
than a threshold size

• notify_ready(): notify Core about the readiness of a CommTask

• start(): start a CommTask by calling the underlying push/pull/all-reduce

• notify_finish(): notify Core about the completion of a CommTask

32

Dependency Proxy: Get the Scheduling Control

• An operator to get the scheduling control from the frameworks to the Core

33

Optimal Scheduling Theorem

34

Other Research Directions / Challenges

• Training in Heterogeneous GPU/CPU Clusters

• Federated Machine Learning over the Wide Area Network

• In-Network Aggregation

• Topology adaptation for DNN training workloads

35

Thanks!

