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Parts of this lecture were adapted from talks on Pensieve, CFA



Adaptive Bit Rate Selection



Video Traffic in the Internet

Video's share of global internet traffic
80% share
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High Definition Content Impacts IP Video Growth
0 UHD IP video will account for 22% of global IP video traffic by 2022
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Cisco Contidently Source: Cisco VNI Global IP Traffic Forecast, 2017-2022



Adaptive Video Streaming

* Video streaming over the network

 Requirements

* High resolution (high bitrate)

* Smooth playback (no rebuffering)

e Start playing immediately



Adaptive Video Streaming
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Challenges with ABR

* Fluctuating network conditions

e A variety of QoE goals

e Cascading effects

 Coarse-grained decisions



Previous ABR algorithms

e Rate-based: pick bitrate based on predicted throughput

e FESTIVE [CoNEXT’12], PANDA [JSAC’14], CS2P [SIGCOMM’| 6]

e Buffer-based: pick bitrate based on buffer occupancy

e BBA [SIGCOMM’I4], BOLA [INFOCOM’16]

 Hybrid: use both throughput prediction & buffer occupancy

e PBA [HotMobile’l5], MPC [SIGCOMM’| 5]



Pensieve [SIGCOMM’17]

* Learn from video streaming sessions in
actual network conditions

* Deep RL-based solution

 Tailors ABR decisions for different
network conditions in a data-driven way

e Delivers 12-25% better QoE, with 10-30%
less rebuffering than previous ABR

algorithms

bandwidth

bit rate

buffer /

T

VM

ABR agent
8 bitrates

network and video measurements




Pensieve Design
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Pensieve Advantages

* Learn the dynamics directly from experience

e Optimize the high level QoE objective end-to-end

e Extract control rules from raw high-dimensional signals
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Pensieve Training System

Large corpus of Video playback Model update

network traces Fast chunk-level simulator TensorFlow
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Trace Driven Evaluation

 Dataset: Iwo datasets, each dataset consists of 1000 traces, each trace 320 seconds.
e Video: 193 seconds. encoded at bitrates: {300, 750, 1200, 1850, 2850, 4300} kbps.
* Video player: Google Chrome browser Video server:Apache server

Norway 3G cellular dataset FCC broadband dataset
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Congestion Control



Congestion Control

* A longstanding problem in communication networks

* Determines the bandwidth you get out of the network

* Essential for preventing collapse of the network
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Congestion Control

|5



Underlying Complexities

* Enormous, dynamic network

* Massive agent churn

* (e.g.,, 80,000/sec for YouTube)

e Limited information at the endhost
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History of Congestion Control Mechanisms

S
$

1980s 1990s 2000s 2010s

PS

WraBE] [

Q)

|7



Window
Size

ssthresh1
ssthresh2

ssthresh3

Congestion
Avoidance

triple duplicated ACK Timeout

|18

Time



PCC [NSDI’15]

¢ Online solution

e Reward-based architecture

e Based on utility function

== utility u

U= f(tpt, loss rate, latency, etc.)
e.g. U =tpt x (1 — loss rate)

rate r
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PCC (Performance-Oriented Congestion Control)
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PCC (Performance-Oriented Congestion Control)
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PCC (Performance-Oriented Congestion Control)
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PCC (Performance-Oriented Congestion Control)
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PCC Advantages

e Observes real performance .
Actions

Link

 Control based on empirical evidence

* Online learning algorithm that tracks the empirically-
optimal sending rate similar to gradient ascent
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* Yields consistent high performance

Rate
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PCC Disadvantages

* Gradient descent does not work well in a highly dynamic network

* Does not adapt fast under churn
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Aurora [ICML19]

 Reinforcement Learning-based Congestion Control

e Faster adaptation than PCC

26



Aurora Agent Architecture
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Training/ Testing Environment

Training Environment:

e Simulated network
e Each episode chooses link
parameters from a range:

Capacity

Latency

Loss

Queue
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1 - ~3000pkt
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Testing Environment:

e Real packets in Linux kernel
network emulation
e Much wider testing range:

Capacity

Latency

Loss

Queue

1-128mbps

1 -
912ms

0-20%

1 - 10000pkt




Experimental Results

Test Description:

e Emulated network, with real
Linux kernel noise
e Time-varying link

Emulated Dynamic Link Performance
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Disadvantages of Aurora

* Arbitrary, fixed reward function. Different applications may have different performance
goals

e Does not consider fairness

e Speed of adaptation in real-world networks ??
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Other Directions in Learning

* Multi-agent scenarios

e Cooperative

e Selfish

* Online training
* Few-shot training

* Meta-learning

* Multi-objective Learning
* File transfer

e Live video
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Congestion Control: Hybrid Approach



Towards Hybrid Approach

* Learning based Schemes
* Needs time to adapt in unseen environments
 May have high overhead in real-world settings

* No safety guarantees

e (Classic Heuristics
e Typically lower performance

e Difficult to design a one-size-fits-all solution
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Orca: Hybrid Congestion Control [SIGCOMM’20]

e Combining learning with classic heuristic

* Two level control hierarchy

* Coarse-grained control using Deep RL

* Fine-grained control using classic heuristics
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Two-Level Hierarchy

Time

* Classic CC’s Actions DRL Agent’s Action
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Orca System Design
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Orca Performance

Low Overhead Better Dynamics
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Other Applications



Deep Learning-Based Systems
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Time-Series Based

 TSF Applications
* Network flow prediction
* Heavy-hitter detection
 Time Series Forecasting (TSF)
* Traditional statistical analysis (e.g.,ARIMA)
e ML models (NN-based)
* Non-TSF Formulations
* Flow size prediction (elephant/mice flows)

* Flow count prediction
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Anomaly Detection

* Applications
* [ntrusion Detection
 Malware Detection
e DDoS attacks
* Phishing emails
* ML Techniques used
* Supervised - with labeled datasets
 Unsupervised - clustering-based techniques

* Some RL based solutions also proposed
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Thanks!



