Lecture 16: Internet Peering

CS 234 / NetSys 210:Advanced Computer Networks
Sangeetha Abdu Jyothi

BGP route propagation

- Connectivity does not imply reachability
- Not all possible routes propagate
- Commercial relationships determine policies for
 - Route import
 - Route selection
 - Route export
- Typical relationships
 - Provider-customer: customer pay money for transit
 - Peer-peer: typically exchange respective customers' traffic for free

AS Relationships

Effects of Changing AS relationships

Traditional Internet Model

The new Internet model

Tier-1 vs Tier-2 peering

- Tier I ISPs
 - Buy no transit from any other providers
 - Have only customers and peers
 - Has full mesh peering with other Tier I's
- Tier 2 ISPs
 - ISP that purchases (resells) transit within an Internet region

Benefit of tier-2 peering

- Decreases the cost and reliance on purchased Internet transit
- Lowers inter-AS traffic latency
 - Fewer AS hops, AS peering links traversed
- Is peering always better than transit?
- Concerns of peering:
 - Traffic asymmetry
 - No SLAs: less liability or incentive to improve performance
 - "free" rather than getting paid

Peering Wars

- Reasons to Peer
 - Reduces upstream transit costs
 - Can increase end-to-end performance
- Reasons to Not Peer
 - You would rather have customers
 - Peers are usually your competition
 - Peering relationships may require periodic renegotiation

Physical locations that offer a shared (often distributed) layer-2 switching fabric for members (networks) to exchange traffic with one another.

IXP in Reality is more than a switch

- Complex system
- A number of services are offered

Global Map of IXPs

Image from Packet Clearing House

Anatomy of a Large European IXP

sFlow data

• Sampling Rate: I/I6K packets

Sampling Size: First 128 bytes of Ethernet frame

Table 1: Overview of IXPs sFlow dataset.						
	Apr 25	Aug 22	Oct 10	Nov 28		
	May 1	Aug 28	Oct 16	Dec 4		
Identified member ASes	358	375	383	396		
Router IPs	426	445	455	474		
MAC addresses	428	448	458	474		
Tier-1	13	13	13	13		
Tier-2	281	292	297	306		
Leaf	64	70	73	77		
Countries of member ASes	43	44	45	47		
Continents of member ASes	3	3	3	3		
Average packet rate (Mpps)	142	150	166	174		
Average bandwidth (Gbps)	838	863	954	992		
Daily avg volume (PB)	9.0	9.3	10.3	10.7		

A single IXP had more P2P links than inferred datasets

• 50,000 P2P links in the dataset!

Table 2: Overview of routing and looking glass datasets for November. The numbers show P-P links.

overnoer. The numbers show I -I links.					
	Unique	Visible	only in		
Dataset	LGs / ASN	links	this dataset		
RV	78	5,336	1,084		
RIPE	319	10,913	5,460		
NP	723	3,419	684		
RV+RIPE+NP	997	13,051	10,472		
LG	821 / 148	4,892	2,313		
RV+RIPE+NP+LG	1,070	15,364	15,364		

Number of Peers

Traffic Asymmetry

Traffic Destinations

Figure 6: Geographic distances of IP endpoints to IXP.

Recent Statistics - DE-CIX Frankfurt

Traffic Frankfurt – 2 days

Traffic Frankfurt – 5 years

Techniques for Internet Topology Discovery

- Interface Level
 - Traceroute
 - Geolocation
 - Delay based techniques
 - Name to location mapping
- Router Level
 - Subnet discovery
- AS level
 - BGP routes
 - Traceroute + IP to AS mapping

Thanks!