Math 2B: midterm
 Friday August 19, 11:00-12:15pm

There are 8 exercises, worth a total of 100 points.
No electronic devices/books/notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise 1 (5 points each) Integrate.
(a) $\int x^{2} e^{-x} \mathrm{~d} x$
(b) $\int \frac{x}{x^{4}+1} \mathrm{~d} x$
(c) $\int \tan ^{5} \theta \sec \theta \mathrm{~d} \theta$
(d) $\int\left(\sin \theta \cos \theta+\frac{\cos \theta}{\sin \theta}\right) d \theta$
(e) $\int \frac{1}{\left(1-x^{2}\right)^{3 / 2}} \mathrm{~d} x$

Exercise 2 (5 points each) Determine whether each improper integral below is convergent or divergent. Evaluate those that are convergent.
(a) $\int_{1}^{\infty} \frac{1}{\sqrt{x-1}} \mathrm{~d} x$
(b) $\int_{e}^{\infty} \frac{2}{x(\ln x)^{2}} \mathrm{~d} x$
(c) $\int_{2}^{\infty} \frac{2}{z^{2}-1} \mathrm{~d} z$.

Exercise 3 (5 points) Find $g^{\prime}(x)$ if $g(x)=\int_{x}^{x^{2}} \frac{\sqrt[5]{t^{2}+1}}{\sin t+\cos t+e^{t^{2}}} \mathrm{~d} t$.

Exercise 4 (5 points each) Consider the function $f(x)=x^{2}-x$.
(a) Estimate, using Riemann sums, the area under $f(x)$ and above the x-axis for $x=1$ to $x=5$ using four rectangles and right-hand endpoints.
(b) Express $\int_{1}^{5} f(x) \mathrm{d} x$ as a limit of Riemann sums.
(c) Evaluate the limit from b directly. One may use the formulas: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.

Exercise 5

(a) (5 points) Find the area of the region bounded by $y=x$ and $y=\sqrt{x}$.
(b) (8 points) Find the volume of the solid generated by revolving the region described in part a about $y=2$.
(c) (8 points) Find the volume of the solid whose basis is the region described in part a and whose cross-sections perpendicular to the y-axis are semi-circles with the square side in the $x y$-plane.

Exercise 6 (5 points) Find the average value of the function $f(x)=-3+x^{2}+\frac{1}{x}$ on $[1,3]$.

Exercise 7 (8 points) Assume that f is a continuous function with $\int_{0}^{3} f(x) d x=3$ and $\int_{1}^{0} f(x) d x=-1$. Compute $\int_{0}^{1}(3 f(2 x+1)+4) \mathrm{d} x$.

Exercise 8 (6 points) A car moves in a straight line so that that its velocity at time t is $v(t)=t^{2}-4$. Find the distance travelled between $0 \leq t \leq 3$.

Solution 1:

(a) (integration by parts) $-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}+C$.
(b) (substitution $u=x^{2}$) $1 / 2 \tan ^{-1}\left(x^{2}\right)+C$.
(c) (substitution $u=\sec \theta, d u=\sec \theta \tan \theta)$.

$$
\begin{aligned}
\int \tan ^{5} \theta \sec \theta \mathrm{~d} \theta & =\int\left(\sec ^{2} \theta-1\right)^{2} \tan \theta \sec \theta \mathrm{~d} \theta \\
& =\int\left(u^{2}-1\right)^{2} \mathrm{~d} u=\int 1-2 u^{2}+u^{4} \mathrm{~d} u \\
& =u-2 / 3 u^{3}+1 / 5 u^{5}=\sec \theta-2 / 3 \sec \theta^{3}+1 / 5 \sec \theta^{5}+C
\end{aligned}
$$

(d) (substitution $u=\sin \theta$) $1 / 2 \sin ^{2} \theta+\ln |\sin \theta|+C$.
(e) (inverse substitution) Set $x=\sin \theta$. The integral becomes $\int 1 / \cos ^{2}(\theta) \mathrm{d} \theta=$ $\int \sec ^{2} \theta \mathrm{~d} \theta=\tan \theta+C=\frac{x}{\sqrt{1-x^{2}}}+C$.
Solution 2:
(a) $\int \frac{1}{\sqrt{x-1}} \mathrm{~d} x=2 \sqrt{x-1}$, which goes to infinty as $x \rightarrow \infty$ and (and if the lower bound goes to 1): does not exist.
(b) $\int \frac{2}{x(\ln x)^{2}} \mathrm{~d} x=-2(\ln x)^{-1}$ (substitute $\left.u=\ln x\right)$. The integral becomes 2 .
(c) One has

$$
1 /\left(z^{2}-1\right)=1 /(z-1)-1 /(z+1) .
$$

The primitive is $\ln (z-1)-\ln (z+1)$. One has

$$
\left.\lim _{a \rightarrow \infty} \ln ((z-1) /(z+1))\right]_{2}^{a}=-\ln 1 / 3=\ln 3
$$

Solution 3:
Set $f(t)=\frac{\sqrt[5]{t^{2}+1}}{\sin t+\cos t+e^{t^{2}}}$. Then the answer is $2 x f\left(x^{2}\right)-f(x)$.

Solution 4:

(a) $\Delta=4 / 4=1$, and hence the esimate is $f(2)+f(3)+f(4)+f(5)=2+6+12+20=$ 40.
(b)

$$
\lim _{n \rightarrow \infty} 4 / n \sum_{i=1}^{n} f(1+4 i / n)=\lim _{n \rightarrow \infty} 4 / n \sum_{i=1}^{n}\left((1+4 i / n)^{2}-(1+4 i / n)\right)
$$

(c) The limit is

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} 4 / n \sum_{i=1}^{n} 4 i / n+16 i^{2} / n^{2} \\
& =\lim _{n \rightarrow \infty} 16 / n^{2} \cdot n(n+1) / 2+64 \cdot n(n+1)(2 n+1) / 6=16 / 2+64 / 3=88 / 3
\end{aligned}
$$

Solution 5:

(a) Intersection points are $(0,0)$ and $(1,1)$. One has

$$
\int_{0}^{1}\left(x^{1 / 2}-x\right) \mathrm{d} x=2 / 3 x^{3 / 2}-1 /\left.2 x^{2}\right|_{0} ^{1}=2 / 3-1 / 2=1 / 6 .
$$

(b)

$$
\begin{aligned}
\pi \int_{0}^{1}(2-x)^{2}-(2-\sqrt{x})^{2} \mathrm{~d} x & =\pi \int_{0}^{1} x^{2}-5 x+4 \sqrt{x} \mathrm{~d} x \\
& =\left.\pi\left(1 / 3 x^{3}-5 / 2 x^{2}+8 / 3 x^{3 / 2}\right)\right|_{0} ^{1}=1 / 2 \pi
\end{aligned}
$$

(c) $A(y)=\pi / 8\left(y-y^{2}\right)^{2}$. One has

$$
\pi / 8 \int_{0}^{1}\left(y-y^{2}\right)^{2} \mathrm{~d} y=\pi /\left.8\left(1 / 3 y^{3}-2 / 4 y^{4}+1 / 5 y^{5}\right)\right|_{0} ^{1}=\pi / 8(1 / 3-1 / 2+1 / 5)=\pi / 240 .
$$

Solution 6:

$$
\frac{1}{2} \int_{1}^{3} f(x) \mathrm{d} x=\ln (3) / 2+8 / 6
$$

Solution 7:
One has $\int_{1}^{3} f(x) \mathrm{d} x=\int_{1}^{0} f(x) \mathrm{d} x+\int_{0}^{3} f(x) \mathrm{d} x=2$. One then has $(u=2 x+1$, $d u=2 d x)$.
$\int_{0}^{1} 3 f(2 x+1)+4 \mathrm{~d} x=4+3 \int_{0}^{1} f(2 x+1) \mathrm{d} x=4+3 / 2 \int_{1}^{3} f(u) \mathrm{d} u=4+3 / 2 \cdot 2=7$.

Solution 8:

$$
\int_{0}^{2} 4-t^{2} \mathrm{~d} t+\int_{2}^{3} t^{2}-4 \mathrm{~d} t=23 / 3
$$

