Math 2B: midterm

Friday August 25 2017, 1:00-2:15pm
There are 9 exercises, worth a total of 100 points.
No electronic devices/books/notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise 1 (5 points each) Integrate.
(a) $\int \frac{\sin (x)}{1+\cos ^{2}(x)} \mathrm{d} x$
(b) $\int x^{2} \sin (2 x) \mathrm{d} x$
(c) $\int \tan ^{5}(x) \sec ^{3}(x) \mathrm{d} x$
(d) $\int \frac{\mathrm{d} x}{\sqrt{x^{2}+4}}$. You may use: $\int \sec (\theta) \mathrm{d} \theta=\ln |\sec (\theta)+\tan (\theta)|+C$.

Exercise 2 (5 points each) Determine whether each improper integral below is convergent or divergent. Evaluate those that are convergent.
(a) $\int_{1}^{5}(x-1)^{-4 / 3} \mathrm{~d} x$
(b) $\int_{0}^{\infty} x e^{-x} \mathrm{~d} x$
(c) $\int_{3}^{\infty} \frac{1}{x^{2}-x-2} \mathrm{~d} x$.

Exercise 3 (5 points each) Consider the function $f(x)=2 x$.
(a) Estimate, using Riemann sums, the area under $f(x)$ and above the x-axis for $x=1$ to $x=3$ using four rectangles and left-hand endpoints.
(b) Express $\int_{1}^{3} f(x) \mathrm{d} x$ as a limit of Riemann sums.
(c) Evaluate the limit from part b directly (do not use the fundamental theorem of calculus). One may use the formula: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.

Exercise 4 (5 points) Find $g^{\prime}(x)$ if $g(x)=\int_{x}^{\sin (x)} \frac{t^{2}+2 t}{e^{t}+1} d t$.

Exercise 5

(a) (5 points) Find the area of the region enclosed by $y=x$ and $y=x^{4}$.
(b) (10 points) Find the volume of the solid generated by revolving the region described in part (a) about $y=-1$.
(c) (10 points) Find the volume of the solid whose base is the region described in part (a) and whose cross-sections perpendicular to the y-axis are squares with one side in the $x y$-plane.

Exercise 6 (5 points) Find the average value of the function $f(x)=\sin ^{3}(x)$ on $[0, \pi]$.

Exercise 7 (5 points) Assume that f is a continuous function with $\int_{1}^{4} f(x) \mathrm{d} x=42$. Compute $\int_{1}^{2} x f\left(x^{2}\right) \mathrm{d} x$.

Exercise 8 (5 points) A sail boat sails in a straight line so that that its velocity at time t is $v(t)=t^{3}-1$. Find the distance traveled of the boat between $t=0$ and $t=2$.

Exercise 9: (5 points) Let $g(x)=\int_{1}^{x} f(t) \mathrm{d} t$ where $f(t)$ is given by the following plot:

Fill in the blanks:

$$
\begin{aligned}
& g(0)= \\
& g(1)= \\
& g(6)= \\
& g^{\prime}(2)= \\
& g^{\prime}(4)= \\
&
\end{aligned}
$$

Solutions:

1a: substitute $u=\cos (x)$. Then

$$
\int \frac{\sin (x)}{1+\cos ^{2}(x)} \mathrm{d} x=-\int \frac{1}{1+u^{2}} \mathrm{~d} u=-\tan ^{-1}(u)+C=-\tan ^{-1}(\cos (x))+C .
$$

1 b : integration by parts (standard computation)

$$
1 / 4 \cos (2 x)-1 / 2 x^{2} \cos (2 x)+1 / 2 x \sin (2 x)+C
$$

1c: rewrite and substitute $u=\sec (x)$:

$$
\begin{aligned}
\int \tan ^{5}(x) \sec ^{3}(x) \mathrm{d} x & =\int\left(\sec ^{2}(x)-1\right)^{2} \sec ^{2}(x) \sec (x) \tan (x) \mathrm{d} x \\
& =\int\left(u^{2}-1\right)^{2} u^{2} \mathrm{~d} u=1 / 7 u^{7}-2 / 5 u^{5}+1 / 3 u^{3}+C \\
& =1 / 7 \sec ^{7}(x)-2 / 5 \sec ^{5}(x)+1 / 3 \sec ^{3}(x)+C
\end{aligned}
$$

$1 \mathrm{~d}: x=2 \tan (\theta)$ transforms the integral into $\int \sec (\theta) \mathrm{d} \theta$. Then apply the given formula to obtain

$$
\int \frac{\mathrm{d} x}{\sqrt{x^{2}+4}}=\ln \left|\sqrt{x^{2}+4}+x\right|+C
$$

2a: $-\left.3(x-1)^{-1 / 3}\right|_{1} ^{5}$, it diverges.
$2 \mathrm{~b}:-x e^{-x}+\left.e^{-x}\right|_{0} ^{\infty}=1$.
2c: Note: $1 /\left(x^{2}-x-2\right)=1 /((x-2)(x+1))=1 / 3 \cdot 1 /(x-2)-1 / 3 \cdot 1 /(x+1)$.
Hence integral is

$$
\int_{3}^{\infty} 1 /\left(x^{2}-x-2\right) \mathrm{d} x=1 /\left.3 \ln \left(\left|\frac{x-2}{x+1}\right|\right)\right|_{3} ^{\infty}=\ln (4) / 3
$$

This integral diverges.
3a: $1 / 2(f(1 / 2)+f(3 / 2)+f(2)+f(5 / 2))=1 / 2(2+3+4+5)=7$.
3b: $\lim _{n \rightarrow \infty} 2 / n \sum_{i=1}^{n} 2(1+2 i / n)$ (also other options, this is right hand points).
3c: A simple computation shows that the limit becomes

$$
\lim _{n \rightarrow \infty} 4+4(n+1) / n=8
$$

4:

$$
\cos (x) \frac{\sin (x)^{2}+2 \sin (x)}{e^{\sin (x)}+1}-3 x^{2} \frac{x^{2}+2 x}{e^{x}+1}
$$

5a: $\int_{0}^{1}\left(x-x^{4}\right) \mathrm{d} x=3 / 10$.
5b: $\int_{0}^{1} \pi\left((x+1)^{2}-\left(x^{4}+1\right)^{2}\right) \mathrm{d} x=37 / 45 \pi$.
5c: $\int_{0}^{1}\left(y^{1 / 4}-y\right)^{2} \mathrm{~d} y=1 / 9$.
6 :
$1 / \pi \int_{0}^{\pi} \sin ^{3}(x) \mathrm{d} x=1 / \pi \int_{0}^{\pi}\left(1-\cos ^{2}(x)\right) \sin (x) \mathrm{d} x=\left.\frac{1}{\pi} \cdot\left(-\cos (x)+1 / 3 \cos ^{3}(x)\right)\right|_{0} ^{\pi}=4 / 3$.
7: substitution:

$$
\int_{1}^{2} x f\left(x^{2}\right) d u=\int_{1}^{4} 1 / 2 f(u) d u
$$

($u=x^{2}$) and hence the result is $1 / 2 \cdot 42=21$.
8: $\int_{0}^{1}\left(1-t^{3}\right) \mathrm{d} t+\int_{1}^{2}\left(t^{3}-1\right) \mathrm{d} t=\left.\left(t-t^{4} / 4\right)\right|_{0} ^{1}+\left.\left(t^{4} / 4-t\right)\right|_{1} ^{2}=7 / 2$.
9: $g(0)=-2, g(1)=0, g(6)=1, g^{\prime}(2)=4$ and $g^{\prime}(4)=-1$.

