120A: Midterm

Wednesday August 23 2017, 8.00-9.40am

There are 6 exercises, worth a total of $100=20+14+20+12+10+24$ points.
No books, notes and calculators allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise $1(20=6+6+2+6 \mathrm{pts})$
(a) Give the definition of a group.
(b) Consider the set $S=\mathbf{R} \backslash\{-1\}$ of real numbers except -1 . Define $*$ on S by $a * b=a+b+a b$.

Show that $(S, *)$ is a group.
(c) Show that the group in part b is abelian.
(d) Show that (\mathbf{Q}, \cdot) where \cdot is the standard multiplication on \mathbf{Q} is not a group.

Exercise $2(14=7+7 \mathrm{pts})$
(a) Let $n \in \mathbf{Z}_{\geq 1}$. Show that $A=\left\{\frac{a}{n}: a \in \mathbf{Z}\right\} \subset \mathbf{Q}$ is a subgroup of $(\mathbf{Q},+)$.
(b) Find all the subgroups of $\left(\mathbf{Z}_{12},+_{12}\right)$ and construct the corresponding subgroup diagram.

Exercise 3 ($20=4+4+4+4+4$ pts)
Let $\sigma, \tau \in S_{7}$ be permutations defined by

$$
\sigma=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 1 & 4 & 7 & 3 & 5 & 6
\end{array}\right), \tau=(12)(376)
$$

(a) Compute the disjoint cycle notation of σ.
(b) Compute σ^{-1}.
(c) Compute $\sigma \tau \sigma$.
(d) Compute τ^{32}.
(e) Is τ an even or an odd permutation?

Exercise $4(12=8+4 \mathrm{pts})$
(a) Let G be a group and let $g, h \in G$. Show that the equation $g x=h$ has a unique solution for $x \in G$.
(b) Given an example of a binary structure $(S, *)$ and $s, t \in S$ such that the equation $s x=t$ does not have a unique solution for $x \in S$.

Exercise 5 (10 pts)
Let G and H be isomorphic groups. Assume that G is a cyclic group. Show that H is a cyclic group.

Exercise 6 ($24=6+6+6+6 \mathrm{pts}$)
True of false? Explain.
(a) The group S_{5} has an element of order 7 .
(b) Let G be a group and let $H_{1} \subseteq G$ be a subgroup. Let $H_{2} \subseteq H_{1}$ be a subgroup of H_{1}. Then H_{2} is a subgroup of G.
(c) Let G be a group. Then there is a set A such that G is isomorphic with a subgroup of S_{A} (the permutation group of A).
(d) Let G be a cyclic group. Then there is a unique $a \in G$ with $G=\langle a\rangle$.

