## SOME SAMPLE FINAL QUESTIONS

1. Give the subgroup diagram of $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$. Label each vertex with the corresponding group.
2. a. Prove that if $G$ is a finite group and $g \in G$ is an element, then the order of $g$ divides the order of $G$.
b. Prove or disprove: If $G$ is a finite group and the positive integer $n$ divides the order of $G$, then there exists an element in $G$ of order $n$.
c. Prove Fermat's Little Theorem: If $p$ is a prime and if $a \in \mathbb{Z}$ is relatively prime to $p$, then $a^{p-1} \equiv 1 \bmod p$.
3. Prove that a group of order 6 contains an element of order 2. (Do not use Cauchy's theorem.)
4. Prove that the quaternion group $Q_{8}$ is not isomorphic to the dihedral group $D_{4}$.
5. Consider the binary operation defined on the set $\{a, b, c, d\}$ given in the following table.

| $*$ | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | $b$ | $d$ | $a$ | $c$ |
| $b$ | $d$ | $c$ | $b$ | $a$ |
| $c$ | $a$ | $b$ | $c$ | $d$ |
| $d$ | $c$ | $a$ | $d$ | $b$ |

a. Is there an identity element for this operation? If so, what is it?
b. What is the inverse of $d$ for this operation? Briefly explain your answer.
c. What is the order of $a$ for this operation? Briefly explain your answer.
6. Let $G$ be the group of bijections $\mathbb{Z} \rightarrow \mathbb{Z}$, with group operation composition of functions. (You don't need to prove that this is a group.)
a. What is the identity element of this group?
b. Give an example of an element of order 3 in this group.
c. Give an example of an element of infinite order in this group.
d. Is this group abelian?
7. Give an example or prove none exists.
a. A one-to-one homomorphism $U\left(\mathbb{Z}_{8}\right) \rightarrow \mathbb{Z}_{8}$.
b. A non-abelian subgroup of an abelian group.
c. A non-cyclic infinite group.
d. A normal subgroup $H$ of $(\mathbb{R},+)$ such that the factor group $\mathbb{R} / H$ has exactly two elements.
e. A subgroup $H$ of $S_{4}$ such that $H$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $H$ is not a normal subgroup of $S_{4}$.
8. Answer True or False to the following and prove your answers.
a. If $H, K$ are groups, then $H \times K$ is isomorphic to $K \times H$.
b. For every group $G$ and element $g \in G$, there exists some subgroup $H$ of $G$ such that $g \in H$ and such that $H$ is cyclic.
c. If $p$ is prime and $G$ is a group of order $p^{3}$, then $G$ has an element of order $p$. (Do not use Cauchy's theorem.)
d. If $n$ is an integer and $G$ is a group of order $n^{3}$, then $G$ has an element of order $n$. (Hint. Try $n=4$.)

