120B: Homework 1

By: Michiel Kosters
Report mistakes to kosters@gmail.com

1. Book exercises

Complete the following book exercises: Section 18: 8, 27, 33, 39, 41, 56.

2. Extra ExERCISES

Exercise 1

We know that $(\mathbf{Z},+, \cdot)$ is a ring. For each of the following triples, determine whether the given triple is a ring. Justify your answers.
(a) $(\mathbf{Z},+,+)$.
(b) $(\mathbf{Z},+, \star)$ where \star is defined by $a \star b=0$ for all $a, b \in \mathbf{Z}$.
(c) $(\mathbf{Z}, \cdot,+)$.

Exercise 2:

For each of the following, determine if it is a ring. If it is not a ring, prove it. If it is a ring, answer the following questions and prove your answers.
i. Is it commutative?
ii. Does it have unity? If so, identify it.
iii. Is it a field?
(a) The natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$ with the usual operations of addition and multiplication.
(b) The "integers and half-integers" $\{\ldots,-3 / 2,-1,-1 / 2,0,1 / 2,1, \ldots\}$, i.e., the rational numbers $r \in \mathbf{Q}$ satisfying $2 r \in \mathbf{Z}$.
(c) The set is $\prod_{n=1}^{\infty} \mathbf{R}$, which is sequences of real numbers $\left(a_{1}, a_{2}, \ldots\right)$, with addition and multiplication defined termwise.
(d) The set is $\bigoplus_{n=1}^{\infty} \mathbf{R}$, which is sequences of real numbers $\left(a_{1}, a_{2}, \ldots\right)$ for which all but finitely many of the numbers are zero, and with addition and multiplication defined termwise.

