1. Book exercises

Complete the following book exercises: Section 19: 1, 10, 17, 26, 30. Section 20: 6, 7, 17.

2. Extra exercises

Exercise 1

For each of the following, determine if it is a ring. If it is not a ring, prove it. If it is a ring, answer the following questions and prove your answers.

- i. Is it commutative?
- ii. Does it have unity? If so, identify it.
- iii. Is it an integral domain?
- iv. Is it a field?

(a) The set of all rational numbers that can be written in the form $\frac{m}{n}$ with $m, n \in \mathbb{Z}$ and n odd, with the usual operations of addition and multiplication.

(b) The set of all functions $f : \mathbf{R} \to \mathbf{R}$, with operations of pointwise addition and multiplication of functions.

(c) The set of all 2×2 matrices with real entries and trace equal to zero, with the usual matrix addition and matrix multiplication.

(d) The set of all subsets of **Z** with operations defined by $S_1 + S_2 = S_1 \cup S_2$ and $S_1 \cdot S_2 = S_1 \cap S_2$.

(e) The set $\mathbf{Q} \times \mathbf{Q}$ with operations defined by (a, b) + (c, d) = (a + c, b + d) and $(a, b) \cdot (c, d) = (ac - bd, ad + bc)$.

Exercise 2

Compute the last two digits of $(3^4)^5$ and 3^{4^5} .