1. Book exercises

Complete the following book exercises:
Section 19: 1, 10, 17, 26, 30.
Section 20: 6, 7, 17.

2. Extra ExERCISES

Exercise 1

For each of the following, determine if it is a ring. If it is not a ring, prove it. If it is a ring, answer the following questions and prove your answers.
i. Is it commutative?
ii. Does it have unity? If so, identify it.
iii. Is it an integral domain?
iv. Is it a field?
(a) The set of all rational numbers that can be written in the form $\frac{m}{n}$ with $m, n \in \mathbf{Z}$ and n odd, with the usual operations of addition and multiplication.
(b) The set of all functions $f: \mathbf{R} \rightarrow \mathbf{R}$, with operations of pointwise addition and multiplication of functions.
(c) The set of all 2×2 matrices with real entries and trace equal to zero, with the usual matrix addition and matrix multiplication.
(d) The set of all subsets of \mathbf{Z} with operations defined by $S_{1}+S_{2}=S_{1} \cup S_{2}$ and $S_{1} \cdot S_{2}=S_{1} \cap S_{2}$.
(e) The set $\mathbf{Q} \times \mathbf{Q}$ with operations defined by $(a, b)+(c, d)=(a+c, b+d)$ and $(a, b) \cdot(c, d)=(a c-b d, a d+b c)$.

Exercise 2

Compute the last two digits of $\left(3^{4}\right)^{5}$ and $3^{4^{5}}$.

