1. Book exercises

Complete the following book exercises: Section 20: 29. Section 21: 1, 4. Section 22: 1, 17, 23, 27, 30.

2. Extra exercises

Exercise 1

Let F be a finite field. Let $\varphi : F \to F$ be any function. Show that there is a polynomial $f \in F[X]$ such that for any $c \in F$ one has $f(c) = \varphi(c)$ (hint: for every $d \in F$ construct a polynomial $g_d \in F[X]$ with $g_d(c) = \delta_{cd}$ for any $c \in F$).

Exercise 2

Let $m, n \in \mathbb{Z}_{\geq 1}$ with gcd(m, n) = 1. (a) Show that the natural map

$$au: \mathbf{Z}/mn\mathbf{Z}
ightarrow \mathbf{Z}/m\mathbf{Z} imes \mathbf{Z}/n\mathbf{Z}$$

 $a + mn\mathbf{Z} \mapsto (a + m\mathbf{Z}, a + n\mathbf{Z})$

is an isomorphism of rings (prove first that the map is well-defined). You may use that by the Euclidean algorithm, there are $x, y \in \mathbb{Z}$ with xm + yn = 1.

(b) Show that $\varphi(mn) = \varphi(m)\varphi(n)$ (here φ is the Euler phi function, defined by $\varphi(m) = \#(\mathbf{Z}/m\mathbf{Z})^*$).