Math 120B
Sample final questions

1. Consider the set

$$
\left\{\left(r_{1}, r_{2}, r_{3}, \ldots\right)\left|r_{i} \in \mathbb{R},\left|r_{i}\right| \leq\left|r_{i+1}\right|\right\}\right.
$$

equipped with coordinate-wise addition and multiplication. Does this structure form a ring? If so, is it commutative? Does it have unity? Is it an integral domain? Is it a field? What is its characteristic?
2. Define operations on \mathbb{Z} by

$$
\begin{aligned}
& a \oplus b:=a+b \\
& a \odot b:=a b \text { if } a, b \geq 0 \\
& a \odot b:=0 \text { if } a<0 \text { or } b<0 .
\end{aligned}
$$

Does this structure form a ring? If so, is it commutative? Does it have unity? Is it an integral domain? Is it a field? What is its characteristic?
3. For each of the following, give an example or prove none exists.
a. A non-zero ring homomorphism $\mathbb{Z}_{3} \rightarrow \mathbb{Z}_{15}$.
b. A subring of $\mathbb{Z}_{3}[x]$ which is not an ideal in $\mathbb{Z}_{3}[x]$.
c. A subring of \mathbb{Z} which is not an ideal in \mathbb{Z}.
d. An integral domain of characteristic zero in which $r \mapsto r^{2}$ is a ring homomorphism.
e. A non-zero ring homomorphism from a field of characteristic 0 to a ring of characteristic 4 .
f. A prime ideal in $\mathbb{Q}[x]$ which is not a maximal ideal.
g. A prime ideal in $\mathbb{Q} \times \mathbb{Q}$ which is not a maximal ideal.
h. A non-empty subset of a ring which is closed under addition and multiplication which is not a subring. (Hint. Look in a ring without unity.)
i. A finite ring without unity.
j. A finite, non-commutative ring.
k. An ideal which is not a principal ideal.

1. Three pairwise non-isomorphic rings R_{1}, R_{2}, R_{3}, such that each has exactly four elements.
m . A reducible polynomial over a field F that has no zeros in F.
n. A field F in which $1+1+1+1+1+1$ is not a unit.
2. Prove that if $\operatorname{gcd}(a, 23)=1$, then $a^{11}= \pm 1 \bmod 23$.
3. Prove carefully that the rings $\mathbb{R}[x]$ and $\mathbb{C}[x]$ are not isomorphic.
4. Let $f(x) \in \mathbb{Q}[x]$ be a degree 2 polynomial, and let $N \subseteq \mathbb{Q}[x]$ be the principal ideal

$$
N=\left(5 x^{10}-100 x^{5}+10\right) \subseteq \mathbb{Q}[x] .
$$

True/False: $f(x)+N$ is a unit in $\mathbb{Q}[x] / N$.
7. Let $n \geq 1$ be a positive integer. Prove there exists K, an extension field of \mathbb{Q}, such that the degree of K over \mathbb{Q} equals n. (Why doesn't your proof work for extensions of \mathbb{Z}_{p} ?)
8. a. What is meant by the notation $\mathbb{Q}(\sqrt[4]{2}, i)$?
b. What is the degree of $\mathbb{Q}(\sqrt[4]{2}, i)$ over \mathbb{Q} ? (Hint. Use that if the degree of K / \mathbb{Q} is m and the degree of K_{1} / K is n, then the degree of K_{1} / \mathbb{Q} is $m n$.)
c. Write out a basis for the \mathbb{Q}-vector space $\mathbb{Q}(\sqrt[4]{2}, i)$.
9. a. Define what it means for an element in an integral domain to be irreducible.
b. Give an example of a prime $p \in \mathbb{Z}$ such that $p>20$ and p is reducible in $\mathbb{Z}[i]$.
10. a. Define Euclidean domain.
b. Define principal ideal.
c. Prove that every ideal in a Euclidean domain is principal.
11. Let \mathcal{O} denote the ring of Hurwitz integers. Prove that $\alpha \in \mathcal{O}$ is a unit if and only if $N(\alpha)=1$. (You may use any other facts in your proof, but clearly state those facts when you use them.)

