Math 2B Version A Quiz 1 Solutions
Exercise 1 (3 points) Find the most general antiderivative of

$$
\frac{1}{x}+5 \sec ^{2}(x)+3 \tan (x) \sec (x)+\pi^{x}+x^{3} .
$$

Solution: $\ln |x|+5 \tan ^{2}(x)+3 \sec (x)+\frac{\pi^{x}}{\ln (\pi)}+\frac{x^{4}}{4}+C$

Exercise 2 (3 points) Suppose $f^{\prime \prime}(x)=e^{x}$ and suppose $f^{\prime}(0)=\pi$ and $f(0)=2$. Find $f(x)$.

Solution: Taking antiderivative of $f^{\prime \prime}(x)$,
$f^{\prime}(x)=e^{x}+C$ so as $f^{\prime}(0)=\pi, f^{\prime}(x)=e^{x}+\pi-1$
Taking the antiderivative of $f^{\prime}(x)$,
$f(x)=e^{x}+(\pi-1) x+C$ so as $f(0)=2, f(x)=e^{x}+(\pi-1) x+1$

Exercise 3 (4 points)
Estimate the area under the graph of $f(x)=x^{3}$ from $x=0$ to $x=2$ using four approximating rectangles (of the same width) and right endpoints.

Solution: We divide up the interval $[0,2]$ to four intervals of the same length: $\left[0, \frac{1}{2}\right],\left[\frac{1}{2}, 1\right],\left[1, \frac{3}{2}\right],\left[\frac{3}{2}, 2\right]$ and since it asks for right endpoint approximation, we get

Approximate Area Under Graph $=\frac{1}{2} f\left(\frac{1}{2}\right)+\frac{1}{2} f(1)+\frac{1}{2} f\left(\frac{3}{2}\right)+\frac{1}{2} f(2)=\frac{25}{4}$

