Math 2B: midterm 2

Wednesday November 15 2017, 8:00-8.50am

There are 5 exercises, worth a total of 93 points.
No electronic devices/books/notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise $1(36=9+9+9+9$ pts $)$ Evaluate each of the following integrals.
(a) $\int e^{x} \cos (x) \mathrm{d} x$
(b) $\int \frac{\sqrt{x^{2}-1}}{x^{4}} \mathrm{~d} x$
(c) $\int \cos ^{5}(\theta) \sin ^{2}(\theta) \mathrm{d} \theta$
(d) $\int \frac{\sqrt{x-2}}{x} \mathrm{~d} x$

Exercise $2(24=8+8+8 \mathrm{pts})$ Determine whether the following improper integrals are convergent or divergent (hint: first compute the indefinite integrals). Evaluate those that are convergent.
(a) $\int_{0}^{3} \frac{\mathrm{~d} x}{x}$.
(b) $\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{2} \sqrt{x^{2}+4}}$
(c) $\int_{0}^{\infty} \frac{\mathrm{d} y}{(y+1)(y+2)}$

Exercise 3 ($15=3+3+3+3+3 \mathrm{pts})$ Determine whether each of the following sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ is convergent or divergent. If a sequence is convergent, find its limit.
(a) $a_{n}=1+\frac{(-1)^{n}}{n^{2}}$
(b) $a_{n}=\cos \left(\frac{\pi n^{5}+n^{3}}{n^{5}+4 n^{2}}\right)$
(c) $a_{n}=\sin \left(\frac{\pi}{2} n\right)$
(d) $a_{n}=\left(\frac{4}{5}\right)^{n}$
(e) $a_{n}=n \ln (1+1 / n)$.

Exercise 4 ($10=5+5 \mathrm{pts})$
(a) Compute $\sum_{n=0}^{\infty} \frac{5 \cdot 3^{n+1}}{2^{2 n}}$.
(b) Compute $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$.

Exercise $5(8=2+2+2+2$ pts) Determine whether each of the following statements is true or false. No justification needed.
(a) Suppose f and g are continuous with $f(x) \geq g(x)$ for $x \geq a$. If $\int_{a}^{\infty} f(x) \mathrm{d} x$ is convergent, then $\int_{a}^{\infty} g(x) \mathrm{d} x$ is convergent.
(b) The sum $\sum_{n=1}^{\infty} \frac{n^{2}+3 n}{n^{2}+2}$ converges.
(c) $\int \sec (x) \mathrm{d} x=\ln |\cos (x)+\tan (x)|+C$.
(d) Every bounded, increasing sequence is convergent.

Solutions:

1a: (integration by parts) $e^{x}(\sin (x)+\cos (x)) / 2+C$.
1b: $\left(x^{2}-1\right)^{3 / 2} /\left(3 x^{3}\right)+C$
1c: $1 / 7 \sin ^{7}(\theta)-2 / 5 \sin ^{5}(\theta)+1 / 3 \sin ^{3}(\theta)+C$.
1d: $2 \sqrt{x-2}-2 \sqrt{2} \tan ^{-1}(\sqrt{x-2} / \sqrt{2})$.
2a: $\lim _{t \rightarrow 0}-\ln (t)=\infty$. diverges
2b: antiderivative $-\frac{\sqrt{x^{2}+4}}{4 x}+C$, integral becomes $1 / 4(\sqrt{5}-1)$.
2c: $-1 /(y+1)-1 / 3 \cdot 1 /(y+2)$, integral becomes $\ln (2)$.
3a: 1.
$3 \mathrm{~b}: \cos (\pi)=-1$
3c: diverges
3d: 0
3e: 1 (use l'Hôpital)
4a: $\sum_{n=0}^{\infty} 15(3 / 4)^{n}=15 /(1-3 / 4)=60$
4b: (telescoping): diverges
5a: false (functions must be non-negative)
5 b : false (terms do not go to 0)
5 c : false (sec instead of \cos)
5 d : true

