$\label{eq:math2B:midterm2} \begin{array}{c} \mbox{Math 2B: midterm 2} \\ \mbox{Wednesday November 15 2017, } 8{:}00-8{.}50 \mbox{am} \end{array}$

There are 5 exercises, worth a total of 93 points. No electronic devices/books/notes allowed. Provide computations and or explanations, unless stated otherwise.

Name:

Student ID:

Exercise 1 (36 = 9 + 9 + 9 + 9 pts) Evaluate each of the following integrals. (a) $\int e^x \cos(x) dx$

(b)
$$\int \frac{\sqrt{x^2-1}}{x^4} \,\mathrm{d}x$$

(c) $\int \cos^5(\theta) \sin^2(\theta) d\theta$

(d)
$$\int \frac{\sqrt{x-2}}{x} \, \mathrm{d}x$$

Exercise 2 (24 = 8 + 8 + 8 pts) Determine whether the following improper integrals are convergent or divergent (hint: first compute the indefinite integrals). Evaluate those that are convergent. (a) $\int_0^3 \frac{dx}{x}$.

(b) $\int_1^\infty \frac{\mathrm{d}x}{x^2\sqrt{x^2+4}}$

(c) $\int_0^\infty \frac{\mathrm{d}y}{(y+1)(y+2)}$

Exercise 3 (15 = 3 + 3 + 3 + 3 + 3 pts) Determine whether each of the following sequences $\{a_n\}_{n=1}^{\infty}$ is convergent or divergent. If a sequence is convergent, find its limit. (a) $a_n = 1 + \frac{(-1)^n}{n^2}$

(b) $a_n = \cos\left(\frac{\pi n^5 + n^3}{n^5 + 4n^2}\right)$

(c) $a_n = \sin(\frac{\pi}{2}n)$

(d)
$$a_n = (\frac{4}{5})^n$$

(e) $a_n = n \ln(1 + 1/n)$.

Exercise 4 (10 = 5 + 5 pts) (a) Compute $\sum_{n=0}^{\infty} \frac{5 \cdot 3^{n+1}}{2^{2n}}$.

(b) Compute $\sum_{n=1}^{\infty} \ln\left(\frac{n}{n+1}\right)$.

Exercise 5 (8 = 2 + 2 + 2 + 2 pts) Determine whether each of the following statements is true or false. No justification needed. (a) Suppose f and g are continuous with $f(x) \ge g(x)$ for $x \ge g$. If $\int_{-\infty}^{\infty} f(x) dx$ is

(a) Suppose f and g are continuous with $f(x) \ge g(x)$ for $x \ge a$. If $\int_a^{\infty} f(x) dx$ is convergent, then $\int_a^{\infty} g(x) dx$ is convergent.

(b) The sum $\sum_{n=1}^{\infty} \frac{n^2 + 3n}{n^2 + 2}$ converges.

(c) $\int \sec(x) dx = \ln |\cos(x) + \tan(x)| + C.$

(d) Every bounded, increasing sequence is convergent.

Solutions:

1a: (integration by parts) $e^x(\sin(x) + \cos(x))/2 + C$. 1b: $(x^2 - 1)^{3/2}/(3x^3) + C$ 1c: $1/7\sin^7(\theta) - 2/5\sin^5(\theta) + 1/3\sin^3(\theta) + C$. 1d: $2\sqrt{x-2} - 2\sqrt{2}\tan^{-1}(\sqrt{x-2}/\sqrt{2})$. 2a: $\lim_{t\to 0} -\ln(t) = \infty$. diverges 2b: antiderivative $-\frac{\sqrt{x^2+4}}{4x} + C$, integral becomes $1/4(\sqrt{5}-1)$. 2c: $-1/(y+1) - 1/3 \cdot 1/(y+2)$, integral becomes $\ln(2)$. 3a: 1. 3b: $\cos(\pi) = -1$ 3c: diverges 3d: 0 3e: 1 (use l'Hôpital) 4a: $\sum_{n=0}^{\infty} 15(3/4)^n = 15/(1-3/4) = 60$ 4b: (telescoping): diverges 5a: false (functions must be non-negative) 5b: false (terms do not go to 0) 5c: false (sec instead of cos) 5d: true