Math 2B: Quiz 8 Solutions

Exercise 1 (10 points)Determine whether the series below converge or diverge. Justify your answer. (You may use the back page)
(a)

$$
\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{\frac{1}{2}}}
$$

converges by alternating series test
(b)

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left(\frac{n}{\ln (n)}\right)^{n} \\
\lim _{n \rightarrow \infty} \frac{n}{\ln (n)}=\infty>1
\end{gathered}
$$

So we have that this series diverges by root test
(c)

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{(3 n)!}{(n!)^{2}} \\
\lim _{n \rightarrow \infty} \frac{(3 n+3)!}{(n+1)!(n+1)!} \frac{n!n!}{(3 n)!} \\
=\lim _{n \rightarrow \infty} \frac{(3 n+3)(3 n+2)(3 n+1)}{(n+1)(n+1)}=\infty>1
\end{gathered}
$$

So this series diverges by ratio test
(d)

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{3^{n}}{(n!) 2^{n}} \\
\lim _{n \rightarrow \infty} \frac{3^{n+1}}{(n+1)!2^{n+1}} \frac{n!2^{n}}{3^{n}} \\
=\lim _{n \rightarrow \infty} \frac{3}{2(n+1)}=0<1
\end{gathered}
$$

So the series converges by ratio test
(e)

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}} \\
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e>1
\end{gathered}
$$

So the series diverges by root test
(f)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{\frac{1}{3}}}
$$

converges by alternating series test

