
First-Order Logic
Semantics & Inference

Review Chapters 8.3-8.5,
 Read 9.1-9.2 (optional: 9.5)

Next Lecture

Read Chapters 13, 14.1-14.5

FOL (or FOPC) Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?
Objects --- with their relations, functions, predicates, properties, and general rules.

Reasoning

Representation

A Formal
Symbol System

Inference

Formal Pattern
Matching

Syntax

What is
said

Semantics

What it
means

Schema

Rules of
Inference

Execution

Search
Strategy

Previous
lecture

Review: KB |= S means |= (KB ⇒ S)

• KB |= S is read “KB entails S.”
– Means “S is true in every world (model) in which KB is true.”
– Means “In the world, S follows from KB.”

• KB |= S is equivalent to |= (KB ⇒ S)

– Means “(KB ⇒ S) is true in every world (i.e., is valid).”

• And so: {} |= S is equivalent to |= ({} ⇒ S)

• So what does ({} ⇒ S) mean?
– Means “True implies S.”
– Means “S is valid.”
– In Horn form, means “S is a fact.” p. 256 (R&N 3rd ed..)

Review: Schematic for Follows, Entails, and Derives

If KB is true in the real world,
then any sentence α entailed by KB
and any sentence α derived from KB
 by a sound inference procedure
is also true in the real world.

Sentences Sentence
Derives

Inference

Schematic Example: Follows, Entails, and Derives

Inference

“Mary is Sue’s sister and
Sue is Amy’s parent.” It is necessarily true:

“Mary is Amy’s aunt.” Representation

Derives

Entails

Follows
World

Mary Sue

Amy

“Mary is Sue’s sister and
Sue is Amy’s parent.”

“An aunt is a sister of a
parent.”

“An aunt is a sister
of a parent.”

Sister

Parent

Mary

Amy

Aunt

We can generate a proof:
“Mary is Amy’s aunt.”

Is it provable?

Is it true?

Is it the case?

Want to develop a better, more expressive
language:

• Needs to refer to objects in the world,
• Needs to express general rules

– On(x,y) ~ clear(y)
– All men are mortal
– Everyone over age 21 can drink
– One student in this class got a perfect score
– Etc….

• First order logic, or “predicate calculus” allows
more expressiveness

Building a more expressive language

Example: “Blocks World” (abbreviated)

This is the world of children’s alphabet
blocks. A robot may stack a clear block
on top of a another clear block, or
move a clear block to the floor

This is an abbreviated example, meant
only to present the main ideas as a
sketch of First Order Logic in action, so
as to motivate intuitions. Several
important frame and background
axioms are omitted, for clarity.

Example: “Blocks World” (abbreviated)

• Ontology
– Object constants: Floor; blocks A, B, C
– Timestep integer t
– Predicates: On(x,y, t), Clear(x, t), Block(x), Move(x, y, t)

This example is abbreviated because it omits the “frame axioms” that state that
anything not changed by the action at time=t persists unchanged into time =t+1.

This example is
abbreviated
because it omits the
axiom that states
∀ x Clear(x) ⇔
∀ y ¬ On(y, x)

Example: “Blocks World” (abbreviated)

• Ontology
– Object constants: Floor; blocks A, B, C
– Timestep integer t
– Predicates: On(x,y, t), Clear(x, t), Block(x), Move(x, y, t)

 Laws of Physics” (abbreviated)
– ∀ t Clear(Floor, t)
– ∀ x, y, z, t Clear(x, t) ^ On(x, y, t)
 ^ Clear(z, t) ^ Block(z) ^ Move(x, z, t)
 ⇒ On(x, z, t+1) ^ ¬ On(x, y, t+1) ^ Clear(x, t+1)
 ^ Clear (y, t+1)^ ¬ Clear(z, t+1)
– ∀ x, y, t Clear(x, t) ^ On(x, y, t) ^ Block(y)

^ Move(x, Floor, t)
⇒ On(x, Floor, t+1) ^ Clear(x, t+1) ^ Clear (y, t+1)

 ^ ¬ On(x, y, t+1)

These axioms are set up to prevent the system from moving a block from
the Floor to another place on the Floor, which would be a useless action.

This example is
abbreviated for
the reasons
mentioned above
It is only a cartoon
sketch, in order to
motivate intuition.

Example: “Blocks World” (abbreviated)

• Ontology
– Object constants: Floor; blocks A, B, C
– Timestep integer t
– Predicates: On(x,y, t), Clear(x, t), Block(x), Move(x, y, t)

 Laws of Physics” (abbreviated)
– ∀ t Clear(Floor, t)
– ∀ x, y, z, t Clear(x, t) ^ On(x, y, t)
 ^ Clear(z, t) ^ Block(z) ^ Move(x, z, t)
 ⇒ On(x, z, t+1) ^ ¬ On(x, y, t+1) ^ Clear(x, t+1)
 ^ Clear (y, t+1)^ ¬ Clear(z, t+1)
– ∀ x, y, t Clear(x, t) ^ On(x, y, t) ^ Block(y)

^ Move(x, Floor, t)
⇒ On(x, Floor, t+1) ^ Clear(x, t+1) ^ Clear (y, t+1)

 ^ ¬ On(x, y, t+1)
 Specific Problem Instance

 On(B, A, 0) ^ On(A, C, 0) ^ On(C, Floor, 0) ^ (Clear(B, 0)

This example is
abbreviated for
the reasons
mentioned above
It is only a cartoon
sketch, in order to
motivate intuition.

Example: “Blocks World” (abbreviated)

• Start State
– On(C, Floor, 0) ^ On(A, C, 0) ^ On(B, A, 0) ^ (Clear(B, 0)

• Goal State
– ∃ t On(A, Floor, t) ^ On(B, A, t) ^ On(C, B, t) ^ Clear(C, t)

A
B
C

Floor

Goal State Start State

This example is
abbreviated for
the reasons
mentioned above
It is only a cartoon
sketch, in order to
motivate intuition.

Example: “Blocks World” (abbreviated)

• Start State (t=0)
– On(B, A, 0) ^ On(A, C, 0) ^ On(C, Floor, 0) ^ Clear(B, 0)

• Action = Move(B, Floor, 0) [assume derived as part of some proof]
• “Laws of Physics” after unification {x/B, y/A, t/0}

– Clear(B, 0) ^ On(B, A, 0) ^ Block(A) ^ Move(B, Floor, 0)
⇒ On(B, Floor, 1) ^ Clear(B, 1) ^ Clear (A, 1) ^ ¬ On(B, A, 1)

• Resulting State (t=1)
– On(B, Floor, 1) ^ On(A, C, 1) ^ On(C, Floor, 1) ^ (Clear(B, 1)
 ^ (Clear(A, 1) ^ ¬ On(B, A, 1)

C
A
B

Floor

C
A

B

Floor (t=1) (t=0)

This example is
abbreviated for
the reasons
mentioned above.
It is only a cartoon
sketch, in order to
motivate intuition.

Example: “Blocks World” (abbreviated)

• Previous State (t=1)
– On(B, Floor, 1) ^ On(A, C, 1) ^ On(C, Floor, 1) ^ (Clear(B, 1)^ (Clear(A, 1)

^ ¬ On(B, A, 1)
• Action = Move(A, Floor, 1) [assume derived as part of some proof]
• “Laws of Physics” after unification {x/A, y/C, t/1}

– Clear(A, 1) ^ On(A, C, 1) ^ Block(A) ^ Move(A, Floor, 1)
⇒On(A, Floor, 2) ^ Clear(C, 2) ^ Clear (B, 2)^ Clear (A, 2)
 ^ ¬ On(A, C, 2)

• Resulting State (t=2)
– On(A, Floor, 2) ^ On(B, Floor, 2) ^ On(C, Floor, 2) ^ (Clear(A, 2)
 ^ (Clear(B, 2) ^ (Clear(C, 2) ^ ¬ On(B, A, 2) ^ ¬ On(A, C, 2)

C A B

Floor (t=2)

C
A

B

Floor (t=1)

This example is
abbreviated for
the reasons
mentioned above.
It is only a cartoon
sketch, in order to
motivate intuition.

Example: “Blocks World” (abbreviated)

• Previous State (t=2)
– On(A, Floor, 2) ^ On(B, Floor, 2) ^ On(C, Floor, 2)^ (Clear(A, 2) ^

(Clear(B, 2) ^ (Clear(C, 2) ^ ¬ On(B, A, 2) ^ ¬ On(A, C, 2)
• Action = Move(B, A, 2) [assume derived as part of some proof]
• “Laws of Physics” after unification {x/B, y/Floor, z/A, t/2}

– Clear(B, 2) ^ On(A, Floor, 2) ^ Clear(A, 2) ^ Block(A) ^ Move(B, A, 2)
 ⇒ On(B, A, 3) ^ ¬ On(B, Floor, 3) ^ Clear(B. 3)
 ^ Clear (Floor, 3)^ ¬ Clear(A, 3)
Resulting State (t=3)
– On(A, Floor, 3) ^ On(B, A, 3) ^ On(C, Floor, 3) ^ ¬(Clear(A, 3)
 ^ (Clear(B, 3) ^ (Clear(C, 3)

C A
B

Floor (t=3)
C A B

Floor (t=2)

This example is
abbreviated for
the reasons
mentioned above.
It is only a cartoon
sketch, in order to
motivate intuition.

Example: “Blocks World” (abbreviated)

• Previous State (t=3)
– On(A, Floor, 3) ^ On(B, A, 3) ^ On(C, Floor, 3) ^ ¬(Clear(A, 3)
 ^ (Clear(B, 3) ^ (Clear(C, 3)

• Action = Move(C, B, 3) [assume derived as part of some proof]
• “Laws of Physics” after unification {x/C, y/Floor, z/B, t/3}

– Clear(C, 3) ^ On(C, Floor, 3) ^ Clear(B, 3) ^ Block(B) ^ Move(C, B, 3)
 ⇒ On(C, B, 4) ^ ¬ On(C, Floor, 4) ^ Clear(C. 4)
 ^ Clear (Floor, 4)^ ¬ Clear(B, 4)
Resulting State (t=4)
– On(A, Floor, 4) ^ On(B, A, 4) ^ On(C, B, 4) ^ ¬(Clear(A, 4)
 ^ ¬(Clear(B, 4) ^ (Clear(C, 4) ^ (Clear(Floor, 4)

C

A
B

Floor (t=4)

This example is
abbreviated for
the reasons
mentioned above.
It is only a cartoon
sketch, in order to
motivate intuition. C A

B

Floor (t=3)

Semantics: Worlds

• The world consists of objects that have
properties.
– There are relations and functions between these

objects
– Objects in the world, individuals: people, houses,

numbers, colors, baseball games, wars, centuries
• Clock A, John, 7, the-house in the corner, Tel-Aviv

– Functions on individuals:
• father-of, best friend, third inning of, one more than

– Relations:
• brother-of, bigger than, inside, part-of, has color,

occurred after
– Properties (a relation of arity 1):

• red, round, bogus, prime, multistoried, beautiful

Semantics: Interpretation

• An interpretation of a sentence (wff) is an
assignment that maps
– Object constants to objects in the worlds,
– n-ary function symbols to n-ary functions in the world,
– n-ary relation symbols to n-ary relations in the world

• Given an interpretation, an atomic sentence has
the value “true” if it denotes a relation that holds
for those individuals denoted in the terms.
Otherwise it has the value “false”
– Example: Block world:

• A,B,C,floor, On, Clear
– World:
– On(A,B) is false, Clear(B) is true, On(C,Floor) is true…

• Models are formal worlds within which truth can be evaluated
• Interpretations map symbols in the logic to the world

– Constant symbols in the logic map to objects in the world
– n-ary functions/predicates map to n-ary functions/predicates in the world

• We say m is a model given an interpretation i of a sentence α

if and only if α is true in the world m under the mapping i.

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)
– E.g. KB, = “Mary is Sue’s sister and Amy is Sue’s daughter.”
– α = “Mary is Amy’s aunt.” (Must Tell it about mothers/daughters)

• Think of KB and α as constraints, and models as states.
• M(KB) are the solutions to KB and M(α) the solutions to α.
• Then, KB ╞ α, i.e., ╞ (KB ⇒ a) ,
 when all solutions to KB are also solutions to α.

Review: Models (and in FOL, Interpretations)

Truth in first-order logic

• Sentences are true with respect to a model and an
interpretation

• Model contains objects (domain elements) and relations among
them

• Interpretation specifies referents for

constant symbols → objects

predicate symbols → relations

function symbols → functional relations

• An atomic sentence predicate(term1,...,termn) is true
 iff the objects referred to by term1,...,termn
 are in the relation referred to by predicate

Semantics: Models and Definitions

• An interpretation and possible world satisfies a wff
(sentence) if the wff has the value “true” under that
interpretation in that possible world.

• Model: A domain and an interpretation that satisfies a wff is a
model of that wff

• Validity: Any wff that has the value “true” in all possible
worlds and under all interpretations is valid.

• Any wff that does not have a model under any interpretation
is inconsistent or unsatisfiable.

• Any wff that is true in at least one possible world under at
least one interpretation is satisfiable.

• If a wff w has a value true under all the models of a set of
sentences KB then KB logically entails w.

Models for FOL: Example

An interpretation maps all symbols in KB onto matching symbols in a possible
world. All possible interpretations gives a combinatorial explosion of mappings.
Your job, as a Knowledge Engineer, is to write the axioms in KB so they are
satisfied only under the intended interpretation in your own real world.

All possible interpretations will map all of
these symbols in the logic onto symbols
in the domain in all possible ways.

Summary of FOL Semantics

• A well-formed formula (“wff”) FOL is true or false with respect to
a world and an interpretation (a model).

• The world has objects, relations, functions, and predicates.

• The interpretation maps symbols in the logic to the world.

• The wff is true if and only if (iff) its assertion holds among the
objects in the world under the mapping by the interpretation.

• Your job, as a Knowledge Engineer, is to write sufficient KB
axioms that ensure that KB is true in your own real world under
your own intended interpretation.
– The KB axioms must rule out other worlds and interpretations.

Conversion to CNF

• Everyone who loves all animals is loved by
someone:

∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)]

1. Eliminate biconditionals and implications

∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)]

2. Move ¬ inwards:
 ¬∀x p ≡ ∃x ¬p, ¬ ∃x p ≡ ∀x ¬p

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different
one

∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the

enclosing universally quantified variables:

 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

5. Drop universal quantifiers:

 [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

6. Distribute ∨ over ∧ :
 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

Unification

• Recall: Subst(θ, p) = result of substituting θ into sentence p

• Unify algorithm: takes 2 sentences p and q and returns a
unifier if one exists

 Unify(p,q) = θ where Subst(θ, p) = Subst(θ, q)

• Example:
 p = Knows(John,x)
 q = Knows(John, Jane)

 Unify(p,q) = {x/Jane}

Unification examples

• simple example: query = Knows(John,x), i.e., who does John know?

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}
Knows(John,x) Knows(x,OJ) {fail}

• Last unification fails: only because x can’t take values John and OJ at

the same time
– But we know that if John knows x, and everyone (x) knows OJ, we should be

able to infer that John knows OJ

• Problem is due to use of same variable x in both sentences

• Simple solution: Standardizing apart eliminates overlap of variables,
e.g., Knows(z,OJ)

Unification

• To unify Knows(John,x) and Knows(y,z),

 θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

• The first unifier is more general than the second.

• There is a single most general unifier (MGU) that is unique up

to renaming of variables.

MGU = { y/John, x/z }

• General algorithm in Figure 9.1 in the text

Unification Algorithm

Unification Algorithm

If we have failed or succeeded,
then fail or succeed.

Unification Algorithm

If we can unify a variable
then do so.

Unification Algorithm

If we already have bound
variable var to a value, try
to continue on that basis.

There is an implicit assumption that “{var/val} ∈ θ”, if it
succeeds, binds val to the value that allowed it to succeed,

Unification Algorithm

If we already have bound x
to a value, try to continue
on that basis.

Unification Algorithm

If var occurs anywhere
within x, then no
substitution will succeed.

Unification Algorithm

Else, try to bind var to x,
and recurse.

Unification Algorithm

If a predicate/function,
unify the arguments.

Unification Algorithm

If unifying arguments,
unify the remaining
arguments.

Unification Algorithm

Otherwise, fail.

Hard matching example

• To unify the grounded propositions with premises of the implication
you need to solve a CSP!

• Colorable() is inferred iff the CSP has a solution
• CSPs include 3SAT as a special case, hence matching is NP-hard

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒
Colorable()

Diff(Red,Blue) Diff (Red,Green)
Diff(Green,Red) Diff(Green,Blue)
Diff(Blue,Red) Diff(Blue,Green)

Resolution: brief summary

• Full first-order version:
l1 ∨ ··· ∨ lk, m1 ∨ ··· ∨ mn

(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ
 where Unify(li, ¬mj) = θ.

• The two clauses are assumed to be standardized apart

so that they share no variables.
• For example,

 ¬Rich(x) ∨ Unhappy(x)
 Rich(Ken)

 Unhappy(Ken)
 with θ = {x/Ken}

• Apply resolution steps to CNF(KB ∧ ¬α); complete for

FOL

Example knowledge base

• The law says that it is a crime for an American
to sell weapons to hostile nations. The country
Nono, an enemy of America, has some
missiles, and all of its missiles were sold to it
by Colonel West, who is American.

• Prove that Col. West is a criminal

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile
nations:
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒

Criminal(x)

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧
Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) ⇒ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) ⇒ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)

Resolution proof: definite clauses

~

Forward chaining proof

Forward chaining proof

Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

Missile(x) ⇒ Weapon(x)

Enemy(x,America) ⇒ Hostile(x)

Forward chaining proof

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)

*American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x)
*Owns(Nono,M1) and Missile(M1)
*Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono)

*Missile(x) ⇒ Weapon(x)
*Enemy(x,America) ⇒ Hostile(x)
*American(West)
*Enemy(Nono,America)

Forward chaining proof

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

FOL (or FOPC) Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?
Objects --- with their relations, functions, predicates, properties, and general rules.

Reasoning

Representation

A Formal
Symbol System

Inference

Formal Pattern
Matching

Syntax

What is
said

Semantics

What it
means

Schema

Rules of
Inference

Execution

Search
Strategy

Summary

• First-order logic:
– Much more expressive than propositional logic
– Allows objects and relations as semantic primitives
– Universal and existential quantifiers

• Syntax: constants, functions, predicates, equality, quantifiers

• Nested quantifiers

• Translate simple English sentences to FOPC and back

• Semantics: correct under any interpretation and in any world

• Unification: Making terms identical by substitution

– The terms are universally quantified, so substitutions are justified.

	First-Order Logic�Semantics & Inference
	Slide Number 4
	Review: KB |= S means |= (KB S)
	Review: Schematic for Follows, Entails, and Derives
	Schematic Example: Follows, Entails, and Derives
	Building a more expressive language
	Slide Number 12
	Example: “Blocks World” (abbreviated)
	Example: “Blocks World” (abbreviated)
	Example: “Blocks World” (abbreviated)
	Example: “Blocks World” (abbreviated)
	Example: “Blocks World” (abbreviated)
	Example: “Blocks World” (abbreviated)
	Example: “Blocks World” (abbreviated)
	Example: “Blocks World” (abbreviated)
	Semantics: Worlds
	Semantics: Interpretation
	Review: Models (and in FOL, Interpretations)
	Truth in first-order logic
	Semantics: Models and Definitions
	Models for FOL: Example
	Summary of FOL Semantics
	Conversion to CNF
	Conversion to CNF contd.
	Unification
	Unification examples
	Unification
	Unification Algorithm
	Unification Algorithm
	Unification Algorithm
	Unification Algorithm
	Unification Algorithm
	Unification Algorithm
	Unification Algorithm
	Unification Algorithm
	Unification Algorithm
	Unification Algorithm
	Hard matching example
	Resolution: brief summary
	Example knowledge base
	Example knowledge base contd.
	Resolution proof: definite clauses
	Forward chaining proof
	Forward chaining proof
	Forward chaining proof
	Forward chaining proof
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Backward chaining example
	Slide Number 62
	Summary

