
First-Order Logic 
Semantics & Inference 

Review Chapters 8.3-8.5, 
    Read 9.1-9.2 (optional: 9.5) 

 
Next Lecture 

Read Chapters 13, 14.1-14.5 

 
 
 



FOL (or FOPC) Ontology: 
What kind of things exist in the world? 
What do we need to describe and reason about? 
Objects --- with their relations, functions, predicates, properties, and general rules.  

Reasoning 

Representation 
------------------- 
A Formal 
Symbol System 

Inference 
--------------------- 
Formal Pattern 
Matching 

Syntax 
--------- 
What is 
said 

Semantics 
------------- 
What it 
means 

Schema 
------------- 
Rules of 
Inference 

Execution 
------------- 
Search 
Strategy 

Previous 
lecture 



Review:  KB |= S means |= (KB ⇒ S) 

• KB |= S  is read “KB entails S.” 
– Means “S is true in every world (model) in which KB is true.” 
– Means “In the world, S follows from KB.” 

 
• KB |= S  is equivalent to  |= (KB ⇒ S) 

– Means “(KB ⇒ S) is true in every world (i.e., is valid).” 
 

• And so:  {} |= S is equivalent to  |= ({} ⇒ S) 
 

• So what does ({} ⇒ S) mean? 
– Means “True implies S.” 
– Means “S is valid.” 
– In Horn form, means “S is a fact.”  p. 256 (R&N 3rd ed..) 

 



Review: Schematic for Follows, Entails, and Derives 

If KB is true in the real world, 
then any sentence α entailed by KB 
and any sentence α derived from KB 
       by a sound inference procedure 
is also true in the  real world.  

Sentences Sentence 
Derives 

Inference 



Schematic Example:  Follows, Entails, and Derives 

Inference 

“Mary is Sue’s sister and 
Sue is Amy’s parent.” It is necessarily true: 

“Mary is Amy’s aunt.” Representation 

Derives 

Entails 

Follows 
World 

Mary Sue 

Amy 

“Mary is Sue’s sister and 
Sue is Amy’s parent.” 

“An aunt is a sister of a 
parent.” 

“An aunt is a sister 
of a parent.” 

Sister 

Parent 

Mary 

Amy 

Aunt 

We can generate a proof: 
“Mary is Amy’s aunt.” 

Is it provable? 

Is it true? 

Is it the case? 



Want to develop a better, more expressive 
language: 

• Needs to refer to objects in the world, 
• Needs to express general rules 

– On(x,y)  ~ clear(y) 
– All men are mortal 
– Everyone over age 21 can drink 
– One student in this class got a perfect score 
– Etc…. 

• First order logic, or “predicate calculus” allows 
more expressiveness 

Building a more expressive language 



Example:  “Blocks World” (abbreviated) 

This is the world of children’s alphabet 
blocks. A robot may stack a clear block 
on top of a another clear block, or 
move a clear block to the floor 
 
This is an abbreviated example, meant 
only to present the main ideas as a 
sketch of First Order Logic in action, so 
as to motivate intuitions. Several 
important frame and background 
axioms are omitted, for clarity. 



Example:  “Blocks World” (abbreviated) 

• Ontology 
– Object constants:  Floor; blocks A, B, C 
– Timestep integer t 
– Predicates: On(x,y, t), Clear(x, t), Block(x), Move(x, y, t) 
  

 
 

This example is abbreviated because it omits the “frame axioms” that state that 
anything not changed by the action at time=t persists unchanged into time =t+1. 

This example is 
abbreviated 
because it omits the 
axiom that states  
∀ x Clear(x) ⇔ 
∀ y  ¬ On(y, x) 



Example:  “Blocks World” (abbreviated) 

• Ontology 
– Object constants:  Floor; blocks A, B, C 
– Timestep integer t 
– Predicates: On(x,y, t), Clear(x, t), Block(x), Move(x, y, t) 

 Laws of Physics” (abbreviated) 
– ∀ t Clear(Floor, t) 
– ∀ x, y, z, t Clear(x, t) ^ On(x, y, t)  
 ^ Clear(z, t) ^ Block(z) ^ Move(x, z, t) 
 ⇒ On(x, z, t+1) ^ ¬ On(x, y, t+1) ^ Clear(x, t+1) 
  ^ Clear (y, t+1)^ ¬ Clear(z, t+1) 
– ∀ x, y, t Clear(x, t) ^ On(x, y, t) ^ Block(y)  

^ Move(x, Floor, t) 
⇒ On(x, Floor, t+1) ^ Clear(x, t+1) ^ Clear (y, t+1) 

     ^ ¬ On(x, y, t+1)  
 
 

These axioms are set up to prevent the system from moving a block from 
the Floor to another place on the Floor, which would be a useless action. 

This example is 
abbreviated for 
the reasons 
mentioned above 
It is only a cartoon 
sketch, in order to 
motivate intuition. 



Example:  “Blocks World” (abbreviated) 

• Ontology 
– Object constants:  Floor; blocks A, B, C 
– Timestep integer t 
– Predicates: On(x,y, t), Clear(x, t), Block(x), Move(x, y, t) 

 Laws of Physics” (abbreviated) 
– ∀ t Clear(Floor, t) 
– ∀ x, y, z, t Clear(x, t) ^ On(x, y, t)  
 ^ Clear(z, t) ^ Block(z) ^ Move(x, z, t) 
 ⇒ On(x, z, t+1) ^ ¬ On(x, y, t+1) ^ Clear(x, t+1) 
  ^ Clear (y, t+1)^ ¬ Clear(z, t+1) 
– ∀ x, y, t Clear(x, t) ^ On(x, y, t) ^ Block(y)  

^ Move(x, Floor, t) 
⇒ On(x, Floor, t+1) ^ Clear(x, t+1) ^ Clear (y, t+1) 

     ^ ¬ On(x, y, t+1) 
 Specific Problem Instance 

 On(B, A, 0) ^ On(A, C, 0) ^ On(C, Floor, 0) ^ (Clear(B, 0) 
  

 
 

This example is 
abbreviated for 
the reasons 
mentioned above 
It is only a cartoon 
sketch, in order to 
motivate intuition. 



Example:  “Blocks World” (abbreviated) 

• Start State 
– On(C, Floor, 0) ^ On(A, C, 0) ^ On(B, A, 0) ^ (Clear(B, 0) 

• Goal State 
– ∃ t On(A, Floor, t) ^ On(B, A, t) ^ On(C, B, t) ^ Clear(C, t) 
  

 
 

A 
B 
C 

Floor 

Goal State Start State 

This example is 
abbreviated for 
the reasons 
mentioned above 
It is only a cartoon 
sketch, in order to 
motivate intuition. 



Example:  “Blocks World” (abbreviated) 

• Start State (t=0) 
– On(B, A, 0) ^ On(A, C, 0) ^ On(C, Floor, 0) ^ Clear(B, 0) 

• Action = Move(B, Floor, 0) [assume derived as part of some proof] 
• “Laws of Physics” after unification {x/B, y/A, t/0} 

– Clear(B, 0) ^ On(B, A, 0) ^ Block(A) ^ Move(B, Floor, 0) 
⇒ On(B, Floor, 1) ^ Clear(B, 1) ^ Clear (A, 1) ^ ¬ On(B, A, 1) 

• Resulting State (t=1) 
– On(B, Floor, 1) ^ On(A, C, 1) ^ On(C, Floor, 1) ^ (Clear(B, 1) 
 ^ (Clear(A, 1) ^ ¬ On(B, A, 1) 
  

 
 

C 
A 
B 

Floor 

C 
A 

B 

Floor (t=1) (t=0) 

This example is 
abbreviated for 
the reasons 
mentioned above. 
It is only a cartoon 
sketch, in order to 
motivate intuition. 



Example:  “Blocks World” (abbreviated) 

• Previous State (t=1) 
– On(B, Floor, 1) ^ On(A, C, 1) ^ On(C, Floor, 1) ^ (Clear(B, 1)^ (Clear(A, 1) 

^ ¬ On(B, A, 1) 
• Action = Move(A, Floor, 1) [assume derived as part of some proof] 
• “Laws of Physics” after unification {x/A, y/C, t/1} 

– Clear(A, 1) ^ On(A, C, 1) ^ Block(A) ^ Move(A, Floor, 1) 
⇒On(A, Floor, 2) ^ Clear(C, 2) ^ Clear (B, 2)^ Clear (A, 2) 
 ^ ¬ On(A, C, 2) 

• Resulting State (t=2) 
– On(A, Floor, 2) ^ On(B, Floor, 2) ^ On(C, Floor, 2) ^ (Clear(A, 2) 
 ^ (Clear(B, 2) ^ (Clear(C, 2) ^ ¬ On(B, A, 2) ^ ¬ On(A, C, 2) 

C A B 

Floor (t=2) 

C 
A 

B 

Floor (t=1) 

This example is 
abbreviated for 
the reasons 
mentioned above. 
It is only a cartoon 
sketch, in order to 
motivate intuition. 



Example:  “Blocks World” (abbreviated) 

• Previous State (t=2) 
– On(A, Floor, 2) ^ On(B, Floor, 2) ^ On(C, Floor, 2)^ (Clear(A, 2) ^ 

(Clear(B, 2) ^ (Clear(C, 2) ^ ¬ On(B, A, 2) ^ ¬ On(A, C, 2) 
• Action = Move(B, A, 2) [assume derived as part of some proof] 
• “Laws of Physics” after unification {x/B, y/Floor, z/A, t/2} 

– Clear(B, 2) ^ On(A, Floor, 2) ^ Clear(A, 2) ^ Block(A) ^ Move(B, A, 2) 
 ⇒ On(B, A, 3) ^ ¬ On(B, Floor, 3) ^ Clear(B. 3) 
  ^ Clear (Floor, 3)^ ¬ Clear(A, 3) 
Resulting State (t=3) 
– On(A, Floor, 3) ^ On(B, A, 3) ^ On(C, Floor, 3) ^ ¬(Clear(A, 3) 
 ^ (Clear(B, 3) ^ (Clear(C, 3)  

C A 
B 

Floor (t=3) 
C A B 

Floor (t=2) 

This example is 
abbreviated for 
the reasons 
mentioned above. 
It is only a cartoon 
sketch, in order to 
motivate intuition. 



Example:  “Blocks World” (abbreviated) 

• Previous State (t=3) 
– On(A, Floor, 3) ^ On(B, A, 3) ^ On(C, Floor, 3) ^ ¬(Clear(A, 3) 
 ^ (Clear(B, 3) ^ (Clear(C, 3)  

• Action = Move(C, B, 3) [assume derived as part of some proof] 
• “Laws of Physics” after unification {x/C, y/Floor, z/B, t/3} 

– Clear(C, 3) ^ On(C, Floor, 3) ^ Clear(B, 3) ^ Block(B) ^ Move(C, B, 3) 
 ⇒ On(C, B, 4) ^ ¬ On(C, Floor, 4) ^ Clear(C. 4) 
  ^ Clear (Floor, 4)^ ¬ Clear(B, 4) 
Resulting State (t=4) 
– On(A, Floor, 4) ^ On(B, A, 4) ^ On(C, B, 4) ^ ¬(Clear(A, 4) 
 ^ ¬(Clear(B, 4) ^ (Clear(C, 4) ^ (Clear(Floor, 4)  

C 

A 
B 

Floor (t=4) 

This example is 
abbreviated for 
the reasons 
mentioned above. 
It is only a cartoon 
sketch, in order to 
motivate intuition. C A 

B 

Floor (t=3) 



Semantics: Worlds 

• The world consists of objects that have 
properties. 
– There are relations and functions between these 

objects 
– Objects  in the world, individuals: people, houses, 

numbers, colors, baseball games, wars, centuries 
• Clock A, John, 7, the-house in the corner, Tel-Aviv 

– Functions on individuals: 
• father-of, best friend, third inning of, one more than 

– Relations: 
• brother-of, bigger than, inside, part-of, has color, 

occurred after 
– Properties (a relation of arity 1): 

• red, round, bogus, prime, multistoried, beautiful 

 



Semantics: Interpretation 

• An interpretation of a sentence (wff) is an 
assignment that maps  
– Object constants to objects in the worlds,  
– n-ary function symbols to n-ary functions in the world, 
– n-ary relation symbols to n-ary relations in the world 

• Given an interpretation, an atomic sentence has 
the value “true” if it denotes a relation that holds 
for those individuals denoted in the terms. 
Otherwise it has the value “false” 
– Example: Block world: 

• A,B,C,floor, On, Clear 
– World: 
– On(A,B) is false, Clear(B) is true, On(C,Floor) is true… 



• Models are formal worlds within which truth can be evaluated 
• Interpretations map symbols in the logic to the world 

– Constant symbols in the logic map to objects in the world 
– n-ary functions/predicates map to n-ary functions/predicates in the world 

 
• We say m is a model given an interpretation i of a sentence α 

if and only if α is true in the world m under the mapping i. 
 

• M(α) is the set of all models of α 
 

• Then KB ╞ α iff M(KB) ⊆ M(α) 
– E.g. KB, = “Mary is Sue’s sister and Amy is Sue’s daughter.” 
– α = “Mary is Amy’s aunt.” (Must Tell it about mothers/daughters) 

 
• Think of KB and α as constraints, and models as states. 
• M(KB) are the solutions to KB and M(α) the solutions to α. 
• Then, KB ╞ α, i.e., ╞ (KB ⇒ a) , 
      when all solutions to KB are also solutions to α.  

Review: Models (and in FOL, Interpretations) 



Truth in first-order logic 

• Sentences are true with respect to a model and an 
interpretation 
 

• Model contains objects (domain elements) and relations among 
them 
 

• Interpretation specifies referents for 
 

constant symbols  →  objects 
 
predicate symbols  →  relations 
 
function symbols → functional relations 
 
 

• An atomic sentence predicate(term1,...,termn) is true 
 iff the objects referred to by term1,...,termn 
 are in the relation referred to by predicate 
 



Semantics: Models and Definitions 

• An interpretation and possible world satisfies a wff 
(sentence) if the wff has the value “true” under that 
interpretation in that possible world. 
 

• Model: A domain and an interpretation that satisfies a wff is a 
model of that wff 
 

• Validity: Any wff that has the value “true” in all possible 
worlds and under all interpretations is valid. 
 

• Any wff that does not have a model under any interpretation 
is inconsistent or unsatisfiable. 
 

• Any wff that is true in at least one possible world under at 
least one interpretation is satisfiable. 
 

• If a wff w has a value true under all the models of a set of 
sentences KB then KB logically entails w. 



Models for FOL: Example 

An interpretation maps all symbols in KB onto matching symbols in a possible 
world.  All possible interpretations gives a combinatorial explosion of mappings.  
Your job, as a Knowledge Engineer, is to write the axioms in KB so they are 
satisfied only under the intended interpretation in your own real world. 

All possible interpretations will map all of 
these symbols in the logic onto symbols 
in the domain in all possible ways. 



Summary of FOL Semantics 

• A well-formed formula (“wff”) FOL is true or false with respect to 
a world and an interpretation (a model). 
 

• The world has objects, relations, functions, and predicates. 
 

• The interpretation maps symbols in the logic to the world. 
 

• The wff is true if and only if (iff) its assertion holds among the 
objects in the world under the mapping by the interpretation. 
 

• Your job, as a Knowledge Engineer, is to write sufficient KB 
axioms that ensure that KB is true in your own real world under 
your own intended interpretation. 
– The KB axioms must rule out other worlds and interpretations. 



Conversion to CNF 

• Everyone who loves all animals is loved by 
someone: 
 
∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)] 

 

1. Eliminate biconditionals and implications 
 
∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)] 

 
2. Move ¬ inwards: 
   ¬∀x p ≡ ∃x ¬p,  ¬ ∃x p ≡ ∀x ¬p 
 

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]  
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
 



Conversion to CNF contd. 

3. Standardize variables: each quantifier should use a different 
one 
 

∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)] 
  
 

4. Skolemize: a more general form of existential instantiation. 
Each existential variable is replaced by a Skolem function of the 

enclosing universally quantified variables: 
 
 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x) 

 
5. Drop universal quantifiers: 

 [Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x) 
 
 

6. Distribute ∨ over ∧ : 
 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)] 



Unification 

• Recall: Subst(θ, p) = result of substituting θ into sentence p 
 
 

• Unify algorithm: takes 2 sentences p and q and returns a 
unifier if one exists 
 

         Unify(p,q) = θ   where Subst(θ, p) = Subst(θ, q) 
 
 
 
• Example: 
       p = Knows(John,x) 
       q = Knows(John, Jane) 
 

           Unify(p,q) = {x/Jane} 
 

    



Unification examples 

•  simple example: query = Knows(John,x), i.e., who does John know? 
   
 
p    q    θ   
Knows(John,x)  Knows(John,Jane)   {x/Jane} 
Knows(John,x) Knows(y,OJ)    {x/OJ,y/John} 
Knows(John,x)  Knows(y,Mother(y))  {y/John,x/Mother(John)} 
Knows(John,x) Knows(x,OJ)    {fail} 
 
 
 

 
• Last unification fails: only because x can’t take values John and OJ at 

the same time 
– But we know that if John knows x, and everyone (x) knows OJ, we should be 

able to infer that John knows OJ 
 

• Problem is due to use of same variable x in both sentences 
 

• Simple solution: Standardizing apart eliminates overlap of variables, 
e.g., Knows(z,OJ) 



Unification 

• To unify Knows(John,x) and Knows(y,z), 
 
 θ = {y/John, x/z } or θ = {y/John, x/John, z/John} 
 

 
• The first unifier is more general than the second. 
 

 
• There is a single most general unifier (MGU) that is unique up 

to renaming of variables. 
 

MGU = { y/John, x/z } 
 
 

• General algorithm in Figure 9.1 in the text 



Unification Algorithm 



Unification Algorithm 

If we have failed or succeeded, 
then fail or succeed. 



Unification Algorithm 

If we can unify a variable 
then do so. 



Unification Algorithm 

If we already have bound 
variable var to a value, try 
to continue on that basis. 

There is an implicit assumption that “{var/val} ∈ θ”, if it 
succeeds, binds val to the value that allowed it to succeed,  



Unification Algorithm 

If we already have bound x 
to a value, try to continue 
on that basis. 



Unification Algorithm 

If var occurs anywhere 
within x, then no 
substitution will succeed. 



Unification Algorithm 

Else, try to bind var to x, 
and recurse. 



Unification Algorithm 

If a predicate/function, 
unify the arguments. 



Unification Algorithm 

If unifying arguments, 
unify the remaining 
arguments. 



Unification Algorithm 

Otherwise, fail. 



Hard matching example 

• To unify the grounded propositions with premises of the implication 
you need to solve a CSP! 

• Colorable() is inferred iff the CSP has a solution 
• CSPs include 3SAT as a special case, hence matching is NP-hard 

Diff(wa,nt) ∧ Diff(wa,sa) ∧ Diff(nt,q) ∧ 
Diff(nt,sa) ∧ Diff(q,nsw) ∧ Diff(q,sa) ∧ 
Diff(nsw,v) ∧ Diff(nsw,sa) ∧ Diff(v,sa) ⇒ 
Colorable() 
 
Diff(Red,Blue)    Diff (Red,Green) 
Diff(Green,Red)  Diff(Green,Blue) 
Diff(Blue,Red)    Diff(Blue,Green) 



Resolution: brief summary 

• Full first-order version: 
l1 ∨ ··· ∨ lk,          m1 ∨ ··· ∨ mn 

(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ 
 where Unify(li, ¬mj) = θ. 

 
• The two clauses are assumed to be standardized apart 

so that they share no variables. 
• For example, 

                         ¬Rich(x) ∨ Unhappy(x)  
    Rich(Ken) 

           Unhappy(Ken) 
 with θ = {x/Ken} 

 
• Apply resolution steps to CNF(KB ∧ ¬α); complete for 

FOL 



Example knowledge base 

• The law says that it is a crime for an American 
to sell weapons to hostile nations.  The country 
Nono, an enemy of America, has some 
missiles, and all of its missiles were sold to it 
by Colonel West, who is American. 

 

• Prove that Col. West is a criminal 



Example knowledge base contd. 

... it is a crime for an American to sell weapons to hostile 
nations: 
American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ 

Criminal(x) 
 

Nono … has some missiles, i.e., ∃x Owns(Nono,x) ∧ 
Missile(x): 
Owns(Nono,M1) and Missile(M1) 

 

… all of its missiles were sold to it by Colonel West 
Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono) 

 

Missiles are weapons: 
Missile(x) ⇒ Weapon(x) 

 

An enemy of America counts as "hostile“: 
Enemy(x,America) ⇒ Hostile(x) 

 

West, who is American … 
American(West) 

 

The country Nono, an enemy of America … 
Enemy(Nono,America) 
 



Resolution proof: definite clauses 

~ 



Forward chaining proof 



Forward chaining proof 

Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono) 

Missile(x) ⇒ Weapon(x) 

Enemy(x,America) ⇒ Hostile(x) 



Forward chaining proof 

American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x) 



*American(x) ∧ Weapon(y) ∧ Sells(x,y,z) ∧ Hostile(z) ⇒ Criminal(x) 
*Owns(Nono,M1) and Missile(M1) 
*Missile(x) ∧ Owns(Nono,x) ⇒ Sells(West,x,Nono) 

*Missile(x) ⇒ Weapon(x) 
*Enemy(x,America) ⇒ Hostile(x) 
*American(West) 
*Enemy(Nono,America) 
 

Forward chaining proof 



Backward chaining example 



Backward chaining example 



Backward chaining example 



Backward chaining example 



Backward chaining example 



Backward chaining example 



Backward chaining example 



FOL (or FOPC) Ontology: 
What kind of things exist in the world? 
What do we need to describe and reason about? 
Objects --- with their relations, functions, predicates, properties, and general rules.  

Reasoning 

Representation 
------------------- 
A Formal 
Symbol System 

Inference 
--------------------- 
Formal Pattern 
Matching 

Syntax 
--------- 
What is 
said 

Semantics 
------------- 
What it 
means 

Schema 
------------- 
Rules of 
Inference 

Execution 
------------- 
Search 
Strategy 



Summary 

• First-order logic: 
– Much more expressive than propositional logic 
– Allows objects and relations as semantic primitives 
– Universal and existential quantifiers 

 
• Syntax: constants, functions, predicates, equality, quantifiers 

 
• Nested quantifiers 

 
• Translate simple English sentences to FOPC and back 

 
• Semantics: correct under any interpretation and in any world 

 
• Unification: Making terms identical by substitution 

– The terms are universally quantified, so substitutions are justified. 
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