
Mid-term Review
Chapters 2-7

• Review Agents (2.1-2.3)
• Review State Space Search

• Problem Formulation (3.1, 3.3)
• Blind (Uninformed) Search (3.4)
• Heuristic Search (3.5)
• Local Search (4.1, 4.2)

• Review Adversarial (Game) Search (5.1-5.4)
• Review Constraint Satisfaction (6.1-6.4)
• Review Propositional Logic (7.1-7.5)
• Please review your quizzes and old CS-171 tests

• At least one question from a prior quiz or old CS-171 test will
appear on the mid-term (and all other tests)

Review Agents
Chapter 2.1-2.3

• Agent definition (2.1)

• Rational Agent definition (2.2)
– Performance measure

• Task evironment definition (2.3)
– PEAS acronym

Agents

• An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that
environment through actuators

 Human agent:
 eyes, ears, and other organs for sensors;
 hands, legs, mouth, and other body parts for
 actuators

• Robotic agent:
 cameras and infrared range finders for sensors; various

motors for actuators

Agents and environments

• Percept: agent’s perceptual inputs at an instant

• The agent function maps from percept sequences to
actions:

[f: P* A]
• The agent program runs on the physical architecture to

produce f

• agent = architecture + program

Rational agents

• Rational Agent: For each possible percept sequence, a rational
agent should select an action that is expected to maximize its
performance measure, based on the evidence provided by the
percept sequence and whatever built-in knowledge the agent
has.

• Performance measure: An objective criterion for success of an

agent's behavior

• E.g., performance measure of a vacuum-cleaner agent could
be amount of dirt cleaned up, amount of time taken, amount
of electricity consumed, amount of noise generated, etc.

Task Environment

• Before we design an intelligent agent, we must
specify its “task environment”:

 PEAS:

 Performance measure
 Environment
 Actuators
 Sensors

PEAS

• Example: Agent = Part-picking robot

• Performance measure: Percentage of parts in correct bins

• Environment: Conveyor belt with parts, bins

• Actuators: Jointed arm and hand

• Sensors: Camera, joint angle sensors

Environment types
• Fully observable (vs. partially observable): An agent's sensors give it

access to the complete state of the environment at each point in time.

• Deterministic (vs. stochastic): The next state of the environment is
completely determined by the current state and the action executed
by the agent. (If the environment is deterministic except for the
actions of other agents, then the environment is strategic)

• Episodic (vs. sequential): An agent’s action is divided into atomic
episodes. Decisions do not depend on previous decisions/actions.

• Known (vs. unknown): An environment is considered to be "known" if
the agent understands the laws that govern the environment's
behavior.

Environment types
• Static (vs. dynamic): The environment is unchanged while an agent is

deliberating. (The environment is semidynamic if the environment
itself does not change with the passage of time but the agent's
performance score does)

• Discrete (vs. continuous): A limited number of distinct, clearly defined
percepts and actions.

 How do we represent or abstract or model the world?

• Single agent (vs. multi-agent): An agent operating by itself in an
environment. Does the other agent interfere with my performance
measure?

Review State Space Search
Chapters 3-4

• Problem Formulation (3.1, 3.3)
• Blind (Uninformed) Search (3.4)

• Depth-First, Breadth-First, Iterative Deepening
• Uniform-Cost, Bidirectional (if applicable)
• Time? Space? Complete? Optimal?

• Heuristic Search (3.5)
• A*, Greedy-Best-First

• Local Search (4.1, 4.2)
• Hill-climbing, Simulated Annealing, Genetic Algorithms
• Gradient descent

Problem Formulation
A problem is defined by five items:

 initial state e.g., "at Arad“
 actions

– Actions(X) = set of actions available in State X
 transition model

– Result(S,A) = state resulting from doing action A in state S
 goal test, e.g., x = "at Bucharest”, Checkmate(x)
 path cost (additive, i.e., the sum of the step costs)

– c(x,a,y) = step cost of action a in state x to reach state y
– assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state

to a goal state

12

Vacuum world state space graph

• states? discrete: dirt and robot locations
• initial state? any
• actions? Left, Right, Suck
• transition model? as shown on graph
• goal test? no dirt at all locations
• path cost? 1 per action

13

Implementation: states vs. nodes
• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree
• A node contains info such as:

– state, parent node, action, path cost g(x), depth, etc.

• The Expand function creates new nodes, filling in the various
fields using the Actions(S) and Result(S,A)functions
associated with the problem.

14

Tree search vs. Graph search
Review Fig. 3.7, p. 77

• Failure to detect repeated states can turn a
linear problem into an exponential one!

• Test is often implemented as a hash table.

Solutions to Repeated States

• Graph search
– never generate a state generated before

• must keep track of all possible states (uses a lot of memory)
• e.g., 8-puzzle problem, we have 9! = 362,880 states
• approximation for DFS/DLS: only avoid states in its (limited) memory:

avoid infinite loops by checking path back to root.

– “visited?” test usually implemented as a hash table
15

S

B

C

S

B C

S C B S

State Space
Example of a Search Tree

faster, but memory inefficient

General tree search

Goal test after pop

General graph search

Goal test after pop

Breadth-first graph search
function BRE ADT H-FIRST-SEARCH(problem) returns a solution, or failure

node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0 if
problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node) frontier ←
a FIFO queue with node as the only element
explored ← an empty set
loop do

if EMPTY?(frontier) then return failure
node ← POP(frontier) /* chooses the shallowest node in frontier */
add node .STAT E to explored
for each action in problem .ACT IONS(node .STAT E) do

child ← CHILD-NODE(problem , node , action)
if child .STAT E is not in explored or frontier then

if problem .GOAL -TEST(child .STAT E) then return SOL UT ION(child)
frontier ← INSE RT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

Goal test before push

Uniform cost search: sort by g
A* is identical but uses f=g+h

Greedy best-first is identical but uses h
function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node ← a node with STAT E = problem .INIT IAL-STAT E, PAT H-COST = 0
frontier ← a priority queue ordered by PAT H-COST, with node as the only element
explored ← an empty set
loop do

if EMPTY?(frontier) then return failure
node ← POP(frontier) /* chooses the lowest-cost node in frontier */
 if problem .GOAL -TEST(node .STAT E) then return SOL UT ION(node)
add node .STAT E to explored
for each action in problem .ACT IONS(node .STAT E) do

child ← CHILD-NODE(problem , node , action)
if child .STAT E is not in explored or frontier then

frontier ← INSE RT(child , frontier)
else if child .STAT E is in frontier with higher PAT H-COST then

replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an
extra check in case a shorter path to a frontier state is discovered. The data structure for frontier
needs to support efficient membership testing, so it should combine the capabilities of a priority
queue and a hash table.

Goal test after pop

Depth-limited search & IDS

Goal test before push

When to do Goal-Test? Summary

• For DFS, BFS, DLS, and IDS, the goal test is done when the child
node is generated.
– These are not optimal searches in the general case.
– BFS and IDS are optimal if cost is a function of depth only; then, optimal

goals are also shallowest goals and so will be found first

• For GBFS the behavior is the same whether the goal test is done
when the node is generated or when it is removed
– h(goal)=0 so any goal will be at the front of the queue anyway.

• For UCS and A* the goal test is done when the node is removed

from the queue.
– This precaution avoids finding a short expensive path before a long

cheap path.

Blind Search Strategies (3.4)

• Depth-first: Add successors to front of queue
• Breadth-first: Add successors to back of queue
• Uniform-cost: Sort queue by path cost g(n)
• Depth-limited: Depth-first, cut off at limit l
• Iterated-deepening: Depth-limited, increasing l
• Bidirectional: Breadth-first from goal, too.

• Review “Example hand-simulated search”
– Slides 29-38, Lecture on “Uninformed Search”

Search strategy evaluation
• A search strategy is defined by the order of node expansion

• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of

– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)
– (for UCS: C*: true cost to optimal goal; ε > 0: minimum step cost)

Summary of algorithms
Fig. 3.21, p. 91

Generally the preferred
uninformed search strategy

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deepening
DLS

Bidirectional
(if applicable)

Complete? Yes[a] Yes[a,b] No No Yes[a] Yes[a,d]

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Optimal? Yes[c] Yes No No Yes[c] Yes[c,d]

There are a number of footnotes, caveats, and assumptions.
See Fig. 3.21, p. 91.
[a] complete if b is finite
[b] complete if step costs ≥ ε > 0
[c] optimal if step costs are all identical
 (also if path cost non-decreasing function of depth only)
[d] if both directions use breadth-first search
 (also if both directions use uniform-cost search with step costs ≥ ε > 0)

Heuristic function (3.5)

 Heuristic:
 Definition: a commonsense rule (or set of rules) intended to

increase the probability of solving some problem
 “using rules of thumb to find answers”

 Heuristic function h(n)

 Estimate of (optimal) cost from n to goal
 Defined using only the state of node n
 h(n) = 0 if n is a goal node
 Example: straight line distance from n to Bucharest

 Note that this is not the true state-space distance
 It is an estimate – actual state-space distance can be higher

 Provides problem-specific knowledge to the search algorithm

Greedy best-first search
• h(n) = estimate of cost from n to goal

– e.g., h(n) = straight-line distance from n to
Bucharest

• Greedy best-first search expands the node
that appears to be closest to goal.
– Sort queue by h(n)

• Not an optimal search strategy
– May perform well in practice

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Optimal Path

Greedy Best-first Search
With tree search, will become stuck in this loop

Order of node expansion: S A D S A D S A D. . . .
Path found: none Cost of path found: none .

B

D

G

S

A C

h=5

h=7

h=6

h=8 h=9

h=0

Properties of greedy best-first search

• Complete?
– Tree version can get stuck in loops.
– Graph version is complete in finite spaces.

• Time? O(bm)
– A good heuristic can give dramatic improvement

• Space? O(1) tree search, O(bm) graph search
– Graph search keeps all nodes in memory
– A good heuristic can give dramatic improvement

• Optimal? No
– E.g., Arad Sibiu Rimnicu Vilcea Pitesti Bucharest

is shorter!

A* search

• Idea: avoid paths that are already expensive
– Generally the preferred simple heuristic search
– Optimal if heuristic is:
 admissible (tree search)/consistent (graph search)

• Evaluation function f(n) = g(n) + h(n)
– g(n) = known path cost so far to node n.
– h(n) = estimate of (optimal) cost to goal from node n.
– f(n) = g(n)+h(n)
 = estimate of total cost to goal through node n.

• Priority queue sort function = f(n)

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next:
• Children:
• Expanded:
• Frontier: Arad/366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

• Next: Arad/366=0+366
• Children: Sibiu/393=140+253, Timisoara/447=118+329,

Zerind/449=75+374
• Expanded: Arad/366=0+366
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
366=0+366

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: Sibiu/393=140+253
• Children: Arad/646=280+366, Fagaras/415=239+176,

Oradea/671=291+380, RimnicuVilcea/413=220+193
• Expanded: Arad/366=0+366, Sibiu/393=140+253
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374, Arad/646=280+366,
Fagaras/415=239+176, Oradea/671=291+380,
RimnicuVilcea/413=220+193

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: RimnicuVilcea/413=220+193
• Children: Craiova/526=366+160, Pitesti/417=317+100,

Sibiu/553=300+253
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Arad/
366=0+366

A* tree search example
Note: The
search below
did not “back
track.” Rather,
both arms are
being pursued
in parallel on
the queue.

A* tree search example:
Simulated queue. City/f=g+h

• Next: Fagaras/415=239+176
• Children: Bucharest/450=450+0, Sibiu/591=338+253
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176
• Frontier: Arad/366=0+366, Sibiu/393=140+253,

Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0, Sibiu/591=338+253

A* tree search example
Note: The
search below
did not “back
track.” Rather,
both arms are
being pursued
in parallel on
the queue.

A* tree search example:
Simulated queue. City/f=g+h

• Next: Pitesti/417=317+100
• Children: Bucharest/418=418+0, Craiova/615=455+160,

RimnicuVilcea/607=414+193
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176,
Pitesti/417=317+100

• Frontier: Arad/366=0+366, Sibiu/393=140+253,
Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0,
Sibiu/591=338+253, Bucharest/418=418+0,
Craiova/615=455+160, RimnicuVilcea/607=414+193

A* tree search example

A* tree search example:
Simulated queue. City/f=g+h

• Next: Bucharest/418=418+0
• Children: None; goal test succeeds.
• Expanded: Arad/366=0+366, Sibiu/393=140+253,

RimnicuVilcea/413=220+193, Fagaras/415=239+176,
Pitesti/417=317+100, Bucharest/418=418+0

• Frontier: Arad/366=0+366, Sibiu/393=140+253,
Timisoara/447=118+329, Zerind/449=75+374,
Arad/646=280+366, Fagaras/415=239+176,
Oradea/671=291+380, RimnicuVilcea/413=220+193,
Craiova/526=366+160, Pitesti/417=317+100,
Sibiu/553=300+253, Bucharest/450=450+0,
Sibiu/591=338+253, Bucharest/418=418+0,
Craiova/615=455+160, RimnicuVilcea/607=414+193

Note that
the short
expensive
path stays
on the
queue.
The long
cheap
path is
found and
returned.

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Bucharest/
418=418+0

…
…

Arad/
366=0+366

A* tree search example:
Simulated queue. City/f=g+h

Sibiu/
393=140+253

Timisoara/
447=118+329

Zerind/
449=75+374

Arad/
646=280+366

Fagaras/
415=239+176

Oradea/
671=291+380

Craiova/
526=366+160

Pitesti/
417=317+100

Sibiu/
553=300+253

RimnicuVilcea/
413=220+193

Bucharest/
418=418+0 …

…

Arad/
366=0+366

Properties of A*

• Complete? Yes
 (unless there are infinitely many nodes with f ≤ f(G);
 can’t happen if step-cost ≥ ε > 0)
• Time/Space? Exponential O(bd)
 except if:
• Optimal? Yes
 (with: Tree-Search, admissible heuristic;
 Graph-Search, consistent heuristic)
• Optimally Efficient? Yes
 (no optimal algorithm with same heuristic is guaranteed to expand

fewer nodes)

* *| () () | (log ())h n h n O h n− ≤

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal

state from n.
• An admissible heuristic never overestimates the cost to

reach the goal, i.e., it is optimistic
• Example: hSLD(n) (never overestimates the actual road

distance)
• Theorem: If h(n) is admissible, A* using TREE-SEARCH is

optimal

Consistent heuristics
(consistent => admissible)

• A heuristic is consistent if for every node n, every successor n' of n
generated by any action a,

 h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n’) = g(n’) + h(n’) (by def.)
 = g(n) + c(n,a,n') + h(n’) (g(n’)=g(n)+c(n.a.n’))
 ≥ g(n) + h(n) = f(n) (consistency)
f(n’) ≥ f(n)

• i.e., f(n) is non-decreasing along any path.

• Theorem:
 If h(n) is consistent, A* using GRAPH-SEARCH is optimal

It’s the triangle
inequality !

keeps all checked nodes in
memory to avoid repeated states

Optimality of A* (proof)
Tree Search, where h(n) is admissible

• Suppose some suboptimal goal G2 has been generated and is in the
frontier. Let n be an unexpanded node in the frontier such that n is on a
shortest path to an optimal goal G.

• f(G2) = g(G2) since h(G2) = 0
• f(G) = g(G) since h(G) = 0
• g(G2) > g(G) since G2 is suboptimal

• f(G2) > f(G) from above, with h=0
• h(n) ≤ h*(n) since h is admissible (under-estimate)
• g(n) + h(n) ≤ g(n) + h*(n) from above
• f(n) ≤ f(G) since g(n)+h(n)=f(n) & g(n)+h*(n)=f(G)
• f(n) < f(G2) from above

We want to prove:
 f(n) < f(G2)
(then A* will expand n before G2)

Dominance

• IF h2(n) ≥ h1(n) for all n
 THEN h2 dominates h1

– h2 is almost always better for search than h1
– h2 guarantees to expand no more nodes than does h1
– h2 almost always expands fewer nodes than does h1
– Not useful unless both h1 & h2 are admissible/consistent

• Typical 8-puzzle search costs
 (average number of nodes expanded):

– d=12 IDS = 3,644,035 nodes
 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

– d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

Local search algorithms (4.1, 4.2)

• In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-queens
• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it.
• Very memory efficient (only remember current state)

Random Restart Wrapper
• These are stochastic local search methods

– Different solution for each trial and initial state

• Almost every trial hits difficulties (see below)
– Most trials will not yield a good result (sadly)

• Many random restarts improve your chances

– Many “shots at goal” may, finally, get a good one

• Restart a random initial state; many times
– Report the best result found; across many trials

Random Restart Wrapper
 BestResultFoundSoFar <- infinitely bad;

 UNTIL (you are tired of doing it) DO {

 Result <- (Local search from random initial state);

 IF (Result is better than BestResultFoundSoFar)

 THEN (Set BestResultFoundSoFar to Result);

}

RETURN BestResultFoundSoFar;

Typically, “you are tired of doing it” means that some resource limit is
exceeded, e.g., number of iterations, wall clock time, CPU time, etc. It
may also mean that Result improvements are small and infrequent,
e.g., less than 0.1% Result improvement in the last week of run time.

Local Search Difficulties

• Problems: depending on state, can get stuck in local maxima
– Many other problems also endanger your success!!

These difficulties apply to ALL local search algorithms, and become MUCH more
difficult as the dimensionality of the search space increases to high dimensions.

Local Search Difficulties

• Ridge problem: Every neighbor appears to be downhill
– But the search space has an uphill!! (worse in high dimensions)

These difficulties apply to ALL local search algorithms, and become MUCH more
difficult as the dimensionality of the search space increases to high dimensions.

Ridge:
Fold a piece of
paper and hold
it tilted up at an
unfavorable
angle to every
possible search
space step.
Every step
leads downhill;
but the ridge
leads uphill.

Hill-climbing search

• "Like climbing Everest in thick fog with
amnesia"

•

Simulated annealing search

• Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

•

Improvement: Track the
BestResultFoundSoFar.
Here, this slide follows
Fig. 4.5 of the textbook,
which is simplified.

P(accepting a worse successor)
Decreases as Temperature T decreases

Increases as | ∆ E | decreases
(Sometimes step size also decreases with T)

Tem
perature

e^(∆E / T)
Temperature T

High Low

|∆E |
High Medium Low

Low High Medium

Your “random restart
wrapper” starts here.

Goal: “Ratchet” up a jagged slope
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)

A
Value=42

B
Value=41

C
Value=45

D
Value=44

E
Value=48

F
Value=47

G
Value=51

Va
lu

e

Arbitrary (Fictitious) Search Space Coordinate

You want to get
here. HOW??

This is an
illustrative
cartoon.

E
Value=48
∆E(ED)=-4
∆E(EF)=-1

P(ED) ≈.018
P(EF)≈.37

C
Value=45
∆E(CB)=-4
∆E(CD)=-1
P(CB) ≈.018
P(CD)≈.37

B
Value=41
∆E(BA)=1
∆E(BC)=4
P(BA)=1
P(BC)=1

Goal: “Ratchet” up a jagged slope
(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)

A
Value=42
∆E(AB)=-1
P(AB) ≈.37

D
Value=44
∆E(DC)=1
∆E(DE)=4
P(DC)=1
P(DE)=1

F
Value=47
∆E(FE)=1
∆E(FG)=4
P(FE)=1
P(FG)=1

G
Value=51
∆E(GF)=-4
P(GF) ≈.018

x -1 -4

ex ≈.37 ≈.018

Your “random
restart wrapper”
starts here.

From A you will accept a move to B with P(AB) ≈.37.
From B you are equally likely to go to A or to C.
From C you are ≈20X more likely to go to D than to B.
From D you are equally likely to go to C or to E.
From E you are ≈20X more likely to go to F than to D.
From F you are equally likely to go to E or to G.
Remember best point you ever found (G or neighbor?).

This is an
illustrative
cartoon.

Genetic algorithms (Darwin!!)
• A state = a string over a finite alphabet (an individual)

• Start with k randomly generated states (a population)

• Fitness function (= our heuristic objective function).

– Higher fitness values for better states.

• Select individuals for next generation based on fitness
– P(individual in next gen.) = individual fitness/Σ population fitness

• Crossover fit parents to yield next generation (off-spring)

• Mutate the offspring randomly with some low probability

fitness =
#non-attacking
queens

• Fitness function: #non-attacking queen pairs

– min = 0, max = 8 × 7/2 = 28

• Σ_i fitness_i = 24+23+20+11 = 78
• P(child_1 in next gen.) = fitness_1/(Σ_i fitness_i) = 24/78 = 31%
• P(child_2 in next gen.) = fitness_2/(Σ_i fitness_i) = 23/78 = 29%; etc

probability of being
in next generation =
fitness/(Σ_i fitness_i)

How to convert a
fitness value into a
probability of being in
the next generation.

Review Adversarial (Game) Search
Chapter 5.1-5.4

• Minimax Search with Perfect Decisions (5.2)
– Impractical in most cases, but theoretical basis for analysis

• Minimax Search with Cut-off (5.4)
– Replace terminal leaf utility by heuristic evaluation function

• Alpha-Beta Pruning (5.3)
– The fact of the adversary leads to an advantage in search!

• Practical Considerations (5.4)
– Redundant path elimination, look-up tables, etc.

Games as Search
• Two players: MAX and MIN
• MAX moves first and they take turns until the game is over

– Winner gets reward, loser gets penalty.
– “Zero sum” means the sum of the reward and the penalty is a constant.

• Formal definition as a search problem:

– Initial state: Set-up specified by the rules, e.g., initial board configuration of chess.
– Player(s): Defines which player has the move in a state.
– Actions(s): Returns the set of legal moves in a state.
– Result(s,a): Transition model defines the result of a move.
– (2nd ed.: Successor function: list of (move,state) pairs specifying legal moves.)
– Terminal-Test(s): Is the game finished? True if finished, false otherwise.
– Utility function(s,p): Gives numerical value of terminal state s for player p.

• E.g., win (+1), lose (-1), and draw (0) in tic-tac-toe.
• E.g., win (+1), lose (0), and draw (1/2) in chess.

• MAX uses search tree to determine “best” next move.

An optimal procedure:
The Min-Max method

Will find the optimal strategy and best next move for Max:

• 1. Generate the whole game tree, down to the leaves.

• 2. Apply utility (payoff) function to each leaf.

• 3. Back-up values from leaves through branch nodes:

– a Max node computes the Max of its child values
– a Min node computes the Min of its child values

• 4. At root: choose move leading to the child of highest value.

Two-Ply Game Tree

Two-Ply Game Tree

The minimax decision

Minimax maximizes the utility of
the worst-case outcome for Max

Pseudocode for Minimax
Algorithm

function MINIMAX-DECISION(state) returns an action
 inputs: state, current state in game
return arg maxa∈ACTIONS(state) MIN-VALUE(Result(state,a))

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← +∞
 for a in ACTIONS(state) do
 v ← MIN(v,MAX-VALUE(Result(state,a)))
 return v

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← −∞
 for a in ACTIONS(state) do
 v ← MAX(v,MIN-VALUE(Result(state,a)))
 return v

Properties of minimax
• Complete?

– Yes (if tree is finite).

• Optimal?
– Yes (against an optimal opponent).
– Can it be beaten by an opponent playing sub-optimally?

• No. (Why not?)

• Time complexity?
– O(bm)

• Space complexity?

– O(bm) (depth-first search, generate all actions at once)
– O(m) (backtracking search, generate actions one at a time)

Static (Heuristic) Evaluation Functions

• An Evaluation Function:
– Estimates how good the current board configuration is for a player.
– Typically, evaluate how good it is for the player, how good it is for

the opponent, then subtract the opponent’s score from the
player’s.

– Othello: Number of white pieces - Number of black pieces
– Chess: Value of all white pieces - Value of all black pieces

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

• If the board evaluation is X for a player, it’s -X for the opponent

– “Zero-sum game”

General alpha-beta pruning
• Consider a node n in the tree ---

• If player has a better choice at:

– Parent node of n
– Or any choice point further

up

• Then n will never be reached in
play.

• Hence, when that much is
known about n, it can be
pruned.

Alpha-beta Algorithm
• Depth first search

– only considers nodes along a single path from root at any time

 α = highest-value choice found at any choice point of path for MAX
 (initially, α = −infinity)
 β = lowest-value choice found at any choice point of path for MIN
 (initially, β = +infinity)

• Pass current values of α and β down to child nodes during search.
• Update values of α and β during search:

– MAX updates α at MAX nodes
– MIN updates β at MIN nodes

• Prune remaining branches at a node when α ≥ β

Pseudocode for Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) returns an action
 inputs: state, current state in game
 v←MAX-VALUE(state, - ∞ , +∞)
 return the action in ACTIONS(state) with value v

function MAX-VALUE(state,α , β) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← - ∞
 for a in ACTIONS(state) do
 v ← MAX(v, MIN-VALUE(Result(s,a), α , β))
 if v ≥ β then return v
 α ← MAX(α ,v)
 return v

(MIN-VALUE is defined analogously)

When to Prune?

• Prune whenever α ≥ β.

– Prune below a Max node whose alpha value becomes greater than or
equal to the beta value of its ancestors.

• Max nodes update alpha based on children’s returned values.

– Prune below a Min node whose beta value becomes less than or equal
to the alpha value of its ancestors.

• Min nodes update beta based on children’s returned values.

α/β Pruning vs. Returned Node Value

• Some students are confused about the use of
α/β pruning vs. the returned value of a node

• α/β are used ONLY FOR PRUNING
– α/β have no effect on anything other than pruning
– IF (α >= β) THEN prune & return current node value

• Returned node value = “best” child seen so far
– Maximum child value seen so far for MAX nodes
– Minimum child value seen so far for MIN nodes
– If you prune, return to parent “best” child so far

• Returned node value is received by parent

Alpha-Beta Example Revisited

α, β, initial values
Do DF-search until first leaf

α=−∞
β =+∞

α=−∞
β =+∞

α, β, passed to kids

Review Detailed Example of Alpha-Beta
Pruning in lecture slides.

Alpha-Beta Example (continued)

MIN updates β, based on kids

α=−∞
β =+∞

α=−∞
β =3

Alpha-Beta Example (continued)

α=−∞
β =3

MIN updates β, based on kids.
No change.

α=−∞
β =+∞

Alpha-Beta Example (continued)

MAX updates α, based on kids.
α=3
β =+∞

3 is returned
as node value.

Alpha-Beta Example (continued)

α=3
β =+∞

α=3
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

α=3
β =+∞

α=3
β =2

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

α=3
β =2

α ≥ β,
so prune.

α=3
β =+∞

Alpha-Beta Example (continued)

2 is returned
as node value.

MAX updates α, based on kids.
No change. α=3

β =+∞

Alpha-Beta Example (continued)

,
α=3
β =+∞

α=3
β =+∞

α, β, passed to kids

Alpha-Beta Example (continued)

,

α=3
β =14

α=3
β =+∞

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

,

α=3
β =5

α=3
β =+∞

MIN updates β,
based on kids.

Alpha-Beta Example (continued)

α=3
β =+∞ 2 is returned

as node value.

2

Alpha-Beta Example (continued)

Max calculates the same
node value, and makes the
same move!

2

Review Detailed Example of Alpha-Beta
Pruning in lecture slides.

Review Constraint Satisfaction
Chapter 6.1-6.4

• What is a CSP

• Backtracking for CSP

• Local search for CSPs

Constraint Satisfaction Problems
• What is a CSP?

– Finite set of variables X1, X2, …, Xn

– Nonempty domain of possible values for each variable

D1, D2, …, Dn

– Finite set of constraints C1, C2, …, Cm

• Each constraint Ci limits the values that variables can take,
• e.g., X1 ≠ X2

– Each constraint Ci is a pair <scope, relation>
• Scope = Tuple of variables that participate in the constraint.
• Relation = List of allowed combinations of variable values.
 May be an explicit list of allowed combinations.
 May be an abstract relation allowing membership testing and listing.

• CSP benefits
– Standard representation pattern
– Generic goal and successor functions
– Generic heuristics (no domain specific expertise).

CSPs --- what is a solution?

• A state is an assignment of values to some or all variables.
– An assignment is complete when every variable has a value.
– An assignment is partial when some variables have no values.

• Consistent assignment

– assignment does not violate the constraints

• A solution to a CSP is a complete and consistent assignment.

• Some CSPs require a solution that maximizes an objective function.

CSP example: map coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di={red,green,blue}
• Constraints:adjacent regions must have

different colors.
• E.g. WA ≠ NT

CSP example: map coloring

• Solutions are assignments satisfying all
constraints, e.g.

 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

Constraint graphs

• Constraint graph:

• nodes are variables

• arcs are binary constraints

• Graph can be used to simplify search
 e.g. Tasmania is an independent subproblem

 (will return to graph structure later)

Backtracking example

Minimum remaining values
(MRV)

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

• A.k.a. most constrained variable heuristic

• Heuristic Rule: choose variable with the fewest legal moves

– e.g., will immediately detect failure if X has no legal values

Degree heuristic for the initial
variable

• Heuristic Rule: select variable that is involved in the largest number of constraints on
other unassigned variables.

• Degree heuristic can be useful as a tie breaker.

• In what order should a variable’s values be tried?

Least constraining value for
value-ordering

• Least constraining value heuristic

• Heuristic Rule: given a variable choose the least constraining value
– leaves the maximum flexibility for subsequent variable assignments

Forward checking

• Can we detect inevitable failure early?
– And avoid it later?

• Forward checking idea: keep track of remaining legal values for unassigned variables.

• When a variable is assigned a value, update all neighbors in the constraint graph.
• Forward checking stops after one step and does not go beyond immediate neighbors.

• Terminate search when any variable has no legal values.

Forward checking

• Assign {WA=red}

• Effects on other variables connected by constraints to WA
– NT can no longer be red
– SA can no longer be red

Forward checking

• Assign {Q=green}

• Effects on other variables connected by constraints with WA
– NT can no longer be green
– NSW can no longer be green
– SA can no longer be green

• MRV heuristic would automatically select NT or SA next

Arc consistency

• An Arc X → Y is consistent if
 for every value x of X there is some value y consistent with x
 (note that this is a directed property)

• Put all arcs X → Y onto a queue (X → Y and Y → X both go on, separately)
• Pop one arc X → Y and remove any inconsistent values from X
• If any change in X, then put all arcs Z → X back on queue, where Z is a neighbor of X
• Continue until queue is empty

Arc consistency

• X → Y is consistent if
 for every value x of X there is some value y consistent with x

• NSW → SA is consistent if
 NSW=red and SA=blue
 NSW=blue and SA=???

Arc consistency

• Can enforce arc-consistency:
 Arc can be made consistent by removing blue from NSW

• Continue to propagate constraints….

– Check V → NSW
– Not consistent for V = red
– Remove red from V

Arc consistency

• Continue to propagate constraints….

• SA → NT is not consistent

– and cannot be made consistent

• Arc consistency detects failure earlier than FC

Local search for CSPs
• Use complete-state representation

– Initial state = all variables assigned values
– Successor states = change 1 (or more) values

• For CSPs

– allow states with unsatisfied constraints (unlike backtracking)
– operators reassign variable values
– hill-climbing with n-queens is an example

• Variable selection: randomly select any conflicted variable

• Value selection: min-conflicts heuristic

– Select new value that results in a minimum number of conflicts with the other variables

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

Review Propositional Logic
Chapter 7.1-7.5

• Definitions:
– Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives,

Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology)

• Syntactic Transformations:
– E.g., (A ⇒ B) ⇔ (¬A ∨ B)

• Semantic Transformations:
– E.g., (KB |= α) ≡ (|= (KB ⇒ α)

• Truth Tables:
– Negation, Conjunction, Disjunction, Implication, Equivalence

(Biconditional)

• Inference:
– By Model Enumeration (truth tables)
– By Resolution

Recap propositional logic: Syntax

• Propositional logic is the simplest logic – illustrates basic
ideas

• The proposition symbols P1, P2 etc are sentences

– If S is a sentence, ¬S is a sentence (negation)
– If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)
– If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)
– If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication)
– If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional)

Recap propositional logic:
Semantics

Each model/world specifies true or false for each proposition symbol
E.g. P1,2 P2,2 P3,1
 false true false
With these symbols, 8 possible models can be enumerated automatically.

Rules for evaluating truth with respect to a model m:
 ¬S is true iff S is false
 S1 ∧ S2 is true iff S1 is true and S2 is true
 S1 ∨ S2 is true iff S1is true or S2 is true
 S1 ⇒ S2 is true iff S1 is false or S2 is true
 (i.e., is false iff S1 is true and S2 is false)
 S1 ⇔ S2 is true iff S1⇒S2 is true and S2⇒S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (true ∨ false) = true ∧ true = true

Recap propositional logic:
Truth tables for connectives

OR: P or Q is true or both are true.
XOR: P or Q is true but not both.

Implication is always true
when the premises are False!

Recap propositional logic:
Logical equivalence and rewrite rules

• To manipulate logical sentences we need some rewrite rules.
• Two sentences are logically equivalent iff they are true in same

models: α ≡ ß iff α╞ β and β╞ α

You need to
know these !

Recap propositional logic:
Entailment

• Entailment means that one thing follows from
another:

KB ╞ α

• Knowledge base KB entails sentence α if and only if α
is true in all worlds where KB is true

– E.g., the KB containing “the Giants won and the Reds won”

entails “The Giants won”.
– E.g., x+y = 4 entails 4 = x+y
– E.g., “Mary is Sue’s sister and Amy is Sue’s daughter”

entails “Mary is Amy’s aunt.”

Review: Models (and in FOL,
Interpretations)

• Models are formal worlds in which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)
– E.g. KB, = “Mary is Sue’s sister
 and Amy is Sue’s daughter.”
– α = “Mary is Amy’s aunt.”

• Think of KB and α as constraints,

 and of models m as possible states.
• M(KB) are the solutions to KB
 and M(α) the solutions to α.
• Then, KB ╞ α, i.e., ╞ (KB ⇒ a) ,
 when all solutions to KB are also solutions to α.

Review: Wumpus models

• KB = all possible wumpus-worlds consistent
with the observations and the “physics” of the
Wumpus world.

Review: Wumpus models

α1 = "[1,2] is safe", KB ╞ α1, proved by model checking.

Every model that makes KB true also makes α1 true.

Wumpus models

α2 = "[2,2] is safe", KB ╞ α2

Review: Schematic for Follows, Entails, and Derives

If KB is true in the real world,
then any sentence α entailed by KB
and any sentence α derived from KB
 by a sound inference procedure
is also true in the real world.

Sentences Sentence
Derives

Inference

Schematic Example: Follows, Entails, and Derives

Inference

“Mary is Sue’s sister and
Amy is Sue’s daughter.” “Mary is

Amy’s aunt.” Representation

Derives

Entails

Follows
World

Mary Sue

Amy

“Mary is Sue’s sister and
Amy is Sue’s daughter.”

“An aunt is a sister
of a parent.”

“An aunt is a sister
of a parent.”

Sister

Daughter

Mary

Amy

Aunt

“Mary is
Amy’s aunt.”

Is it provable?

Is it true?

Is it the case?

Recap propositional logic: Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model

e.g., A∨ B, C

A sentence is unsatisfiable if it is false in all models
e.g., A∧¬A

Satisfiability is connected to inference via the following:

KB ╞ A if and only if (KB ∧¬A) is unsatisfiable
(there is no model for which KB is true and A is false)

Inference Procedures
• KB ├ i A means that sentence A can be derived from KB by procedure i

• Soundness: i is sound if whenever KB ├i α, it is also true that KB╞ α

– (no wrong inferences, but maybe not all inferences)

• Completeness: i is complete if whenever KB╞ α, it is also true that KB ├i α
– (all inferences can be made, but maybe some wrong extra ones as

well)

• Entailment can be used for inference (Model checking)
– enumerate all possible models and check whether α is true.
– For n symbols, time complexity is O(2n)...

• Inference can be done directly on the sentences
– Forward chaining, backward chaining, resolution (see FOPC, later)

Resolution = Efficient Implication

(OR A B C D)
(OR ¬A E F G)

(OR B C D E F G)

(NOT (OR B C D)) => A
A => (OR E F G)
--
(NOT (OR B C D)) => (OR E F G)
--
(OR B C D E F G)

->Same ->
->Same ->

Recall that (A => B) = ((NOT A) OR B)
and so:
 (Y OR X) = ((NOT X) => Y)
 ((NOT Y) OR Z) = (Y => Z)
which yields:
 ((Y OR X) AND ((NOT Y) OR Z)) = ((NOT X) => Z) = (X OR Z)

Recall: All clauses in KB are conjoined by an implicit AND (= CNF representation).

Resolution Examples

• Resolution: inference rule for CNF: sound and complete! *
()
()

()

A B C
A

B C

∨ ∨

¬
− − − − − − − − − − − −

∴ ∨

“If A or B or C is true, but not A, then B or C must be true.”

()
()

()

A B C
A D E

B C D E

∨ ∨

¬ ∨ ∨
− − − − − − − − − − −

∴ ∨ ∨ ∨

“If A is false then B or C must be true, or if A is true
then D or E must be true, hence since A is either true or
false, B or C or D or E must be true.”

()
()

()

A B
A B

B B B

∨

¬ ∨
− − − − − − − −

∴ ∨ ≡ Simplification
is done always.

* Resolution is “refutation complete”
in that it can prove the truth of any
entailed sentence by refutation.
* You can start two resolution proofs
in parallel, one for the sentence and
one for its negation, and see which
branch returns a correct proof.

“If A or B is true, and
not A or B is true,
then B must be true.”

Only Resolve ONE Literal Pair!
If more than one pair, result always = TRUE.

Useless!! Always simplifies to TRUE!!
No!
(OR A B C D)
(OR ¬A ¬B F G)

(OR C D F G)
No!

Yes! (but = TRUE)
(OR A B C D)
(OR ¬A ¬B F G)

(OR B ¬B C D F G)
Yes! (but = TRUE)

No!
(OR A B C D)
(OR ¬A ¬B ¬C)

(OR D)
No!

Yes! (but = TRUE)
(OR A B C D)
(OR ¬A ¬B ¬C)

(OR A ¬A B ¬B D)
Yes! (but = TRUE)

• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the (negated) query.
• One of two things can happen:

1. We find which is unsatisfiable. I.e. we can entail the query.

2. We find no contradiction: there is a model that satisfies the sentence
 (non-trivial) and hence we cannot entail the query.

Resolution Algorithm

|KB equivalent to
KB unsatisfiable

α
α

=

∧ ¬

P P∧ ¬

KB α∧ ¬

Resolution example

• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1

• α = ¬P1,2
KB α∧ ¬

False in
all worlds

True!

¬P2,1

Detailed Resolution Proof Example

• In words: If the unicorn is mythical, then it is immortal, but if it is not
mythical, then it is a mortal mammal. If the unicorn is either immortal or a
mammal, then it is horned. The unicorn is magical if it is horned.
 Prove that the unicorn is both magical and horned.
((NOT Y) (NOT R)) (M Y) (R Y) (H (NOT M))
(H R) ((NOT H) G) ((NOT G) (NOT H))

• Fourth, produce a resolution proof ending in ():
• Resolve (¬H ¬G) and (¬H G) to give (¬H)
• Resolve (¬Y ¬R) and (Y M) to give (¬R M)
• Resolve (¬R M) and (R H) to give (M H)
• Resolve (M H) and (¬M H) to give (H)
• Resolve (¬H) and (H) to give ()

• Of course, there are many other proofs, which are OK iff correct.

Propositional Logic --- Summary
• Logical agents apply inference to a knowledge base to derive new

information and make decisions

• Basic concepts of logic:
– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundness: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences
– valid: sentence is true in every model (a tautology)

• Logical equivalences allow syntactic manipulations

• Propositional logic lacks expressive power

– Can only state specific facts about the world.
– Cannot express general rules about the world
 (use First Order Predicate Logic instead)

Mid-term Review
Chapters 2-7

• Review Agents (2.1-2.3)
• Review State Space Search

• Problem Formulation (3.1, 3.3)
• Blind (Uninformed) Search (3.4)
• Heuristic Search (3.5)
• Local Search (4.1, 4.2)

• Review Adversarial (Game) Search (5.1-5.4)
• Review Constraint Satisfaction (6.1-6.4)
• Review Propositional Logic (7.1-7.5)
• Please review your quizzes and old CS-171 tests

• At least one question from a prior quiz or old CS-171 test will
appear on the mid-term (and all other tests)

	Mid-term Review�Chapters 2-7
	Review Agents�Chapter 2.1-2.3
	Agents
	Agents and environments
	Rational agents
	Task Environment
	PEAS
	Environment types
	Environment types
	Review State Space Search�Chapters 3-4
	Problem Formulation
	Vacuum world state space graph
	Implementation: states vs. nodes
	Tree search vs. Graph search�Review Fig. 3.7, p. 77
	Solutions to Repeated States
	General tree search
	General graph search
	Breadth-first graph search
	Uniform cost search: sort by g�A* is identical but uses f=g+h�Greedy best-first is identical but uses h
	Depth-limited search & IDS
	When to do Goal-Test? Summary
	Blind Search Strategies (3.4)
	Search strategy evaluation
	Summary of algorithms�Fig. 3.21, p. 91
	Heuristic function (3.5)
	Greedy best-first search
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Greedy best-first search example
	Optimal Path
	Greedy Best-first Search�With tree search, will become stuck in this loop
	Properties of greedy best-first search
	A* search
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	A* tree search example:�Simulated queue. City/f=g+h
	Properties of A*
	Admissible heuristics
	Consistent heuristics�(consistent => admissible)
	Optimality of A* (proof)�Tree Search, where h(n) is admissible
	Dominance
	Local search algorithms (4.1, 4.2)
	Random Restart Wrapper
	Random Restart Wrapper
	Local Search Difficulties
	Local Search Difficulties
	Hill-climbing search
	Simulated annealing search
	P(accepting a worse successor) �Decreases as Temperature T decreases�Increases as | E | decreases�(Sometimes step size also decreases with T)
	Goal: “Ratchet” up a jagged slope�(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)
	Goal: “Ratchet” up a jagged slope�(see HW #2, prob. #5; here T = 1; cartoon is NOT to scale)
	Genetic algorithms (Darwin!!)
	Slide Number 74
	Review Adversarial (Game) Search�Chapter 5.1-5.4
	Games as Search
	An optimal procedure:�The Min-Max method
	Two-Ply Game Tree
	Two-Ply Game Tree
	Pseudocode for Minimax Algorithm
	Properties of minimax
	Slide Number 82
	Static (Heuristic) Evaluation Functions
	Slide Number 84
	General alpha-beta pruning
	Alpha-beta Algorithm
	Pseudocode for Alpha-Beta Algorithm
	When to Prune?
	α/β Pruning vs. Returned Node Value
	Alpha-Beta Example Revisited
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Alpha-Beta Example (continued)
	Review Constraint Satisfaction�Chapter 6.1-6.4
	Constraint Satisfaction Problems
	CSPs --- what is a solution?
	CSP example: map coloring
	CSP example: map coloring
	Constraint graphs
	Backtracking example
	Minimum remaining values (MRV)
	Degree heuristic for the initial variable
	Least constraining value for value-ordering
	Forward checking
	Forward checking
	Forward checking
	Arc consistency
	Arc consistency
	Arc consistency
	Arc consistency
	Local search for CSPs
	Min-conflicts example 1
	Review Propositional Logic�Chapter 7.1-7.5
	Recap propositional logic: Syntax
	Recap propositional logic: Semantics
	Recap propositional logic:�Truth tables for connectives
	Recap propositional logic:�Logical equivalence and rewrite rules
	Recap propositional logic: Entailment
	Review: Models (and in FOL, Interpretations)
	Review: Wumpus models
	Review: Wumpus models
	Wumpus models
	Review: Schematic for Follows, Entails, and Derives
	Schematic Example: Follows, Entails, and Derives
	Recap propositional logic: Validity and satisfiability
	Inference Procedures
	Resolution = Efficient Implication
	Resolution Examples
	Only Resolve ONE Literal Pair!�If more than one pair, result always = TRUE.�Useless!! Always simplifies to TRUE!!
	Resolution Algorithm
	Resolution example
	Detailed Resolution Proof Example
	Propositional Logic --- Summary
	Mid-term Review�Chapters 2-7

