Constraint satisfaction problems II

CS171, Fall 2017
Introduction to Artificial Intelligence
Prof. Richard Lathrop

University of California

You Should Know

- Node consistency, arc consistency, path consistency, K-consistency (6.2)
- Forward checking (6.3.2)
- Local search for CSPs
- Min-Conflict Heuristic (6.4)
- The structure of problems (6.5)

Minimum remaining values (MRV)

- A heuristic for selecting the next variable
- also called most constrained variable (MCV) heuristic

- choose the variable X with the fewest legal values
- will immediately detect failure if X has no legal values
- (Related to forward checking, later)

Detailed MRV example

Initially, all regions have $\left|D_{i}\right|=3$ Choose one randomly, e.g.*, WA \& pick value, e.g., red
(Better: tie-break with degree...)

Do forward checking (next topic) NT \& SA cannot be red

Now NT \& SA have 2 possible values - pick one randomly

* e.g. = exempli gratia $=$ for example

Detailed MRV example

NT \& SA have two possible values Choose one randomly, e.g., NT, \& pick value, e.g., green
(Better: tie-break with degree; select value by least constraining)

Do forward checking (next topic) SA \& Q cannot be green

Now SA has only 1 possible value; Q has 2 values.

Detailed MRV example

SA has only one possible value Assign it

Do forward checking (next topic) Now Q, NSW, V cannot be blue

Now Q has only 1 possible value; NSW, V have 2 values.

We will assign Q its only value and solve the remainder with no search

Degree heuristic

- Another heuristic for selecting the next variable
- also called most constraining variable heuristic

- Select variable involved in the most constraints on other unassigned variables
- Useful as a tie-breaker among most constrained variables

Note: usually (and in picture above) we use the degree heuristic as a tiebreaker for MRV; however, in homework \& exams we may use it without MRV to show how it works. Let's see an example.

Ex: Degree heuristic (only)

- Select variable involved in largest \# of constraints with other unassigned vars
- Initially: degree(SA) = 5 > degree(other vars); assign it a value, e.g., red
- No neighbor can be red; we remove the edges to assist in counting degree
- Now, degree(NT) = degree(Q) $=\operatorname{degree}(\mathrm{NSW})=2 ; \operatorname{degree}(\mathrm{WA})=\operatorname{degree}(\mathrm{V})=1$
- Select one at random, e.g., NT; assign it a value, e.g., blue
- Now, degree(NSW)=2; degree(Q) $=\operatorname{degree}(\mathrm{V})=1$; degree $(W A)=0$
- Select NSW; assign it a value, e.g., blue; solve remaining problem with no search
- Idea: reduce branching in the future
- The variable with the largest \# of constraints will likely knock out the most values from other variables, reducing the branching factor in the future

Ex: MRV + degree

- Initially, all variables have 3 values; tie-breaker degree => SA, e.g., assign red
- No neighbor can be red; we remove the edges to assist in counting degree
- Now, WA, NT, Q, NSW, V have 2 values each
- WA,V have degree 1; NT,Q,NSW all have degree 2
- Select one at random, e.g. NT; assign it a value, e.g., blue
- Now, WA and Q have only one possible value; degree(Q) $=1>\operatorname{degree}(\mathrm{WA})=0$
- We will solve the remaining problem with no search
- Idea: reduce branching in the future
- The variable with the largest \# of constraints will likely knock out the most values from other variables, reducing the branching factor in the future

Least Constraining Value

- Heuristic for selecting what value to try next
- Given a variable, choose the least constraining value:
- the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

- Makes it more likely to find a solution early

Look-ahead: Constraint propagation

- Intuition:
- Apply propagation at each node in the search tree (reduce future branching)
- Choose a variable that will detect failures early
- Choose value least likely to yield a dead-end
(low branching factor)
(find solution early if possible)
- Forward-checking
- (check each unassigned variable separately)
- Maintaining arc-consistency (MAC)
- (apply full arc-consistency)

Forward checking
 - Idea:

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values
- ONLY check neighbors of most recently assigned variable

WA	NT	Q	NSW	V	SA	T

Forward checking
 Idea:

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values
- ONLY check neighbors of most recently assigned variable

Assign $\{W A=$ red $\}$
Effect on other variables (neighbors of WA):

- NT can no longer be red
- SA can no longer be red

Forward checking
 - Idea:

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values
- Check neighbors of most recently assigned variable Not red

Assign $\{\mathrm{Q}=$ green $\}$
Effect on other variables (neighbors of Q):

- NT can no longer be green
(We already have failure, but FC is too simple to detect it now)
- SA can no longer be green
- NSW can no longer be green

Forward checking
 －Idea：

－Keep track of remaining legal values for unassigned variables
－Backtrack when any variable has no legal values
－Check neighbors of most recently assigned variable Not red

WA	nt	－	nsw				${ }^{\text {SA }} \quad{ }^{\text {a }}$	
							－ロロ－	
		1	$1 \square$	－			－1］	
		1	$1{ }^{1}$					1吅

Assign \｛V＝blue \}
Effect on other variables（neighbors of V ）：
－NSW can no longer be blue
－SA can no longer be blue（no values possible！）
Forward checking has detected that this partial assignment is inconsistent with any complete assignment

Ex: 4-Queens Problem

Backtracking search with forward checking

 Bookkeeping is tricky \& complicated

Ex: 4-Queens Problem

Red = value is assigned to variable
Blue = most recent variable/value pair

Ex: 4-Queens Problem

Red = value is assigned to variable
Blue = most recent variable/value pair

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(\mathrm{X} 2,1)(\mathrm{X} 2,2)(\mathrm{X} 3,1)(\mathrm{X} 3,3)(\mathrm{X} 4,1)(\mathrm{X} 4,4)\}$
- (Please note: As always in computer science, there are many different ways to implement anything. The book-keeping method shown here was chosen because it is easy to present and understand visually. It is not necessarily the most efficient way to implement the book-keeping in a computer. Your job as an algorithm designer is to think long and hard about your problem, then devise an efficient implementation.)
- One possibly more efficient equivalent alternative (of many):
- Deleted:
- $\{(X 2: 1,2)(X 3: 1,3)(X 4: 1,4)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
Blue = most recent variable/value pair

Ex: 4-Queens Problem

Red = value is assigned to variable
Blue = most recent variable/value pair

Ex: 4-Queens Problem

Red = value is assigned to variable
Blue = most recent variable/value pair

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- \{(X2,1)(X2,2) (X3,1) (X3,3) (X4,1) (X4,4) \}
- X2 Level:
- Deleted:
- $\{(\mathrm{X} 3,2)(\mathrm{X} 3,4)(\mathrm{X} 4,3)\}$
- (Please note: Of course, we could have failed as soon as we deleted $\{(X 3,2)(X 3,4)\}$. There was no need to continue to delete ($\mathrm{X} 4,3$), because we already had established that the domain of X3 was null, and so we already knew that this branch was futile and we were going to fail anyway. The book-keeping method shown here was chosen because it is easy to present and understand visually. It is not necessarily the most efficient way to implement the book-keeping in a computer. Your job as an algorithm designer is to think long and hard about your problem, then devise an efficient implementation.)

Ex: 4-Queens Problem

Red = value is assigned to variable
Blue = most recent variable/value pair

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(\mathrm{X} 2,1)(\mathrm{X} 2,2)(\mathrm{X} 3,1)(\mathrm{X} 3,3)(\mathrm{X} 4,1)(\mathrm{X} 4,4)\}$
- X2 Level:
- FAIL at X2=3.
- Restore:
- $\{(\mathrm{X} 3,2)(\mathrm{X} 3,4)(\mathrm{X} 4,3)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- \{(X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) \}
- X2 Level:
- Deleted:
- $\{(X 3,4)(X 4,2)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- \{ (X2,1) (X2,2) (X3,1) (X3,3) (X4,1) (X4,4) \}
- X2 Level:
- Deleted:
- $\{(X 3,4)(X 4,2)\}$
- X3 Level:
- Deleted:
- $\{(\mathrm{X} 4,3)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$
- X2 Level:
- Deleted:
- $\{(X 3,4)(X 4,2)\}$
- X3 Level:
- Fail at X3=2.
- Restore:
- $\{(X 4,3)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(\mathrm{X} 2,1)(\mathrm{X} 2,2)(\mathrm{X} 3,1)(\mathrm{X} 3,3)(\mathrm{X} 4,1)(\mathrm{X} 4,4)\}$
- X2 Level:
- Fail at X2=4.
- Restore:
- $\{(X 3,4)(X 4,2)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable
$X=$ value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Fail at X1=1.
- Restore:
- $\{(X 2,1)(X 2,2)(X 3,1)(X 3,3)(X 4,1)(X 4,4)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable
Blue = most recent variable/value pair
$X=$ value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 2,3)(X 3,2)(X 3,4)(X 4,2)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(\mathrm{X} 2,1)(\mathrm{X} 2,2)(\mathrm{X} 2,3)(\mathrm{X} 3,2)(\mathrm{X} 3,4)(\mathrm{X} 4,2)\}$
- X2 Level:
- Deleted:
- $\{(\mathrm{X} 3,3)(\mathrm{X} 4,4)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

- X1 Level:
- Deleted:
- $\{(X 2,1)(X 2,2)(X 2,3)(X 3,2)(X 3,4)(X 4,2)\}$
- X2 Level:
- Deleted:
- $\{(X 3,3)(X 4,4)\}$
- X3 Level:
- Deleted:
- $\{(X 4,1)\}$

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Ex: 4-Queens Problem

Red = value is assigned to variable Blue = most recent variable/value pair $X=$ value led to failure

Constraint propagation

- Forward checking
- Solving CSPs with combination of heuristics plus forward checking is more efficient than either approach alone.
- Propagates information from most recent assigned to unassigned variables
- But, doesn't provide early detection for all failures:
- NT and SA cannot both be blue!

WA	NT	Q	nsw			v	SA			T
-	\square	-	-			-	-			$\square \square$
			\square		\square	-				\square
			\square	-	\square	-				\square

- Constraint propagation repeatedly enforces constraints locally
- Can detect failure earlier
- But, takes more computation - is it worth the extra effort?

Arc consistency (AC-3)

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff (iff = if and only if)
for every value x of X there is some allowed value y for Y (note: directed!)

- Consider state after WA=red, $\mathrm{Q}=$ =green
- SA \rightarrow NSW consistent if

SA = blue and NSW = red

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed value y for Y (note: directed!)

NSW = red and SA = blue
NSW = blue and SA = ???
=> NSW = blue can be pruned

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed value y for Y (note: directed!)

- Enforce arc consistency:
- arc can be made consistent by removing blue from NSW
- Continue to propagate constraints
- Check $V \rightarrow$ NSW : not consistent for $V=$ red; remove red from V

Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed value y for Y (note: directed!)

- Continue to propagate constraints
- SA \rightarrow NT not consistent:
- And cannot be made consistent! Failure!
- Arc consistency detects failure earlier than FC
- But requires more computation: is it worth the effort?

Ex: Arc Consistency in Sudoku

| | | 2 | 4 | | 6 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 6 | 5 | 1 | | | 2 | | |
| | 1 | | | | 8 | 6 | | 9 |
| 9 | | | | 4 | | 8 | 6 | |
| | 4 | 7 | | | | 1 | 9 | |
| | 5 | 8 | | 6 | | | | 3 |
| 4 | 6 | 9 | | | | 7 | | |
| 4 | | 9 | | | 4 | 5 | 8 | 1 |
| | | | 3 | | 2 | 9 | | |

-Variables: $\mathbf{8 1}$ cells

- Domains $=$
\{1,2,3,4,5,6,7,8,9\}
-Constraints:
-27 all-diff

Each row, column and major block must be all different "Well posed" if it has unique solution: 27 constraints

Ex: Arc Consistency in Sudoku

(Forward Checking yields the same result)

		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				3
4	6	6				7	2	
		9			4	5	8	1
			3		2	9		

-Variables: $\mathbf{8 1}$ cells
-Domains =
\{1,2,3,4,5,6,7,8,9\}
-Constraints:
-27 all-diff

Each row, column and major block must be all different "Well posed" if it has unique solution: 27 constraints

Arc consistency checking

- Can be run as a preprocessor, or after each assignment
- As preprocessor before search: Removes obvious inconsistencies
- After each assignment: Reduces search cost but increases step cost
- $A C$ is run repeatedly until no inconsistency remains
- Like Forward Checking, but exhaustive until quiescence
- Trade-off
- Requires overhead to do; but usually better than direct search
- In effect, it can successfully eliminate large (and inconsistent) parts of the state space more effectively than can direct search alone
- Need a systematic method for arc-checking
- If X loses a value, neighbors of X need to be rechecked:
i.e., incoming arcs can become inconsistent again (outgoing arcs stay consistent).

Arc consistency algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, else true, may reduce csp domains
inputs: csp, a binary CSP with variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
local variables: queue, a queue of arcs, initially all the arcs in csp

```
    /* initial queue must contain both ( }\mp@subsup{X}{ij}{},\mp@subsup{X}{j}{})\mathrm{ and ( }\mp@subsup{X}{j}{},\mp@subsup{X}{i}{}) *
```

while queue is not empty do
$\left(X_{j}, X_{j}\right) \leftarrow$ REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES $\left(X_{j} X_{j}\right)$ then
if size of $D_{i}=0$ then return false
for each X_{k} in NEIGHBORS $\left[X_{i}\right]-\left\{X_{j}\right\}$ do
add $\left(X_{k}, X_{i}\right)$ to queue if not already there
return true
function REMOVE-INCONSISTENT-VALUES $\left(X_{i}, X_{j}\right)$ returns true iff we delete a
value from the domain of X_{i}
removed \leftarrow false
for each x in DOMAIN $\left[X_{i}\right]$ do
if no value y in $\operatorname{DOMAIN}\left[X_{j}\right]$ allows (x, y) to satisfy the constraints between X_{i} and X_{j}
then delete x from DOMAIN $\left[X_{i}\right]$; removed \leftarrow true
return removed

Complexity of AC-3
 - A binary CSP has at most n^{2} arcs

- Each arc can be inserted in the queue d times (worst case)
- (X, Y): only d values of X to delete
- Consistency of an arc can be checked in $O\left(d^{2}\right)$ time
- Complexity is $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}^{3}\right)$
- Although substantially more expensive than Forward Checking, Arc Consistency is usually worthwhile.

K-consistency

- Arc consistency does not detect all inconsistencies:
- Partial assignment $\{W A=r e d$, NSW=red $\}$ is inconsistent.
- Stronger forms of propagation can be defined using the notion of k-consistency.
- A CSP is k-consistent if for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can always be assigned to any kth variable.
- E.g. 1-consistency = node-consistency
- E.g. 2-consistency = arc-consistency
- E.g. 3-consistency = path-consistency
- Strongly k-consistent:
- k-consistent for all values $\{k, k-1, \ldots 2,1\}$

Trade-offs

- Running stronger consistency checks...
- Takes more time
- But will reduce branching factor and detect more inconsistent partial assignments
- No "free lunch"
- In worst case n-consistency takes exponential time
- "Typically" in practice:
- Often helpful to enforce 2-Consistency (Arc Consistency)
- Sometimes helpful to enforce 3-Consistency
- Higher levels may take more time to enforce than they save.

Improving backtracking

- Before search: (reducing the search space)
- Arc-consistency, path-consistency, i-consistency
- Variable ordering (fixed)
- During search:
- Look-ahead schemes:
- Value ordering/pruning (choose a least restricting value),
- Variable ordering (choose the most constraining variable)
- Constraint propagation (take decision implications forward)
- Look-back schemes:
- Backjumping
- Constraint recording
- Dependency-directed backtracking

Further improvements

- Checking special constraints
- Checking Alldiff(...) constraint
- E.g. \{WA=red, NSW=red\}
- Checking Atmost(...) constraint
- Bounds propagation for larger value domains
- Intelligent backtracking
- Standard form is chronological backtracking, i.e., try different value for preceding variable.
- More intelligent: backtrack to conflict set.
- Set of variables that caused the failure or set of previously assigned variables that are connected to X by constraints.
- Backjumping moves back to most recent element of the conflict set.
- Forward checking can be used to determine conflict set.

Local search for CSPs

- Use complete-state representation
- Initial state = all variables assigned values
- Successor states = change 1 (or more) values
- For CSPs
- allow states with unsatisfied constraints (unlike backtracking)
- operators reassign variable values
- hill-climbing with n-queens is an example
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic
- Select new value that results in a minimum number of conflicts with the other variables

Local search for CSPs

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up
current \leftarrow an initial complete assignment for csp
for $i=1$ to max_steps do
if current is a solution for csp then return current $v a r \leftarrow$ a randomly chosen, conflicted variable from VARIABLES[csp]
value \leftarrow the value v for var that minimize CONFLICTS(var,v,current,csp)
set var = value in current
return failure

Number of conflicts

- Solving 4-queens with local search

Note: here I check all neighbors

Number of conflicts

 \& pick the best; typically in practice pick one at random- Solving 4-queens with local search

(2 conflicts)

(0 conflicts)

Local optima

- Local search may get stuck at local optima
- Locations where no neighboring value is better
- Success depends on initialization quality \& basins of attraction
- Can use multiple initializations to improve:
- Re-initialize randomly ("repeated" local search)
- Re-initialize by perturbing last optimum ("iterated" local search)
- Can also add sideways \& random moves (e.g., WalkSAT)

Local optimum example

- Solving 4-queens with local search

"Plateau" example: no single move can decrease \# of conflicts

Comparison of CSP algorithms

Evaluate methods on a number of problems

Problem	Backtracking	BT+MRV	Forward Checking	FC+MRV	Min-Conflicts
USA	$(>1,000 \mathrm{~K})$	$(>1,000 \mathrm{~K})$	2 K	60	64
n-Queens	$(>40,000 \mathrm{~K})$	$13,500 \mathrm{~K}$	$(>40,000 \mathrm{~K})$	817 K	4 K
Zebra	$3,859 \mathrm{~K}$	1 K	35 K	0.5 K	2 K
Random 1	415 K	3 K	26 K	2 K	
Random 2	942 K	27 K	77 K	15 K	

Median number of consistency checks over 5 runs to solve problem
Parentheses -> no solution found
USA: 4 coloring
n-queens: $\mathrm{n}=2$ to 50
Zebra: see exercise 6.7 (3rd ed.); exercise 5.13 (2 ${ }^{\text {nd }}$ ed.)

Advantages of local search

- Local search can be particularly useful in an online setting
- Airline schedule example
- E.g., mechanical problems require than 1 plane is taken out of service
- Can locally search for another "close" solution in state-space
- Much better (and faster) in practice than finding an entirely new schedule
- Runtime of min-conflicts is roughly independent of problem size.
- Can solve the millions-queen problem in roughly 50 steps.
- Why?
- n-queens is easy for local search because of the relatively high density of solutions in state-space

Hardness of CSPs

- $x_{1} \ldots x_{n}$ discrete, domain size $d: O\left(d^{n}\right)$ configurations
- "SAT": Boolean satisfiability: $d=2$
- One of the first known NP-complete problems
- "3-SAT"
- Conjunctive normal form (CNF)
- At most 3 variables in each clause: $\left(x_{1} \vee \neg x_{7} \vee x_{12}\right) \wedge\left(\neg x_{3} \vee x_{2} \stackrel{\vee}{\vee}\right) \wedge \ldots$
- Still NP-complete
- How hard are "typical" problems?

Hardness of random CSPs

- Random 3-SAT problems:
-n variables, p clauses in CNF: $\left(x_{1} \vee \neg x_{7} \vee x_{12}\right) \wedge\left(\neg x_{3} \vee x_{2} \vee x_{7}\right) \wedge \ldots$
- Choose any 3 variables, signs uniformly at random
- What's the probability there is no solution to the CSP?
- Phase transition at (p/n) 1/44.25
- "Hard" instances fall in a very narrow regime around this point!

Hardness of random CSPs

- Random 3-SAT problems:
-n variables, p clauses in CNF: $\left(x_{1} \vee \neg x_{7} \vee x_{12}\right) \wedge\left(\neg x_{3} \vee x_{2} \vee x_{7}\right) \wedge \ldots$
- Choose any 3 variables, signs uniformly at random
- What's the probability there is no solution to the CSP?
- Phase transition at (p/n) 1⁄4 4.25
- "Hard" instances fall in a very narrow regime around this point!

Ex: Sudoku

Avg Time vs. R

Success Rate vs. R

- $R=$ [number of initially filled cells] / [total number of cells]
- Success Rate $=\mathrm{P}($ random puzzle is solvable)
- [total number of cells] $=9 \times 9=81$
- [number of initially filled cells] = variable

Graph structure and complexity

- Disconnected subproblems
- Configuration of one subproblem cannot affect the other: independent!
- Exploit: solve independently

- Worse case cost: O(n/c dc)
- Compare to $O\left(d^{n}\right)$, exponential in n
- Ex: $n=80, c=20, d=2$)
- $2^{80}=4$ billion years at 1 million nodes per second
- $4^{*} 2^{20}=0.4$ seconds at 1 million nodes per second

Tree-structured CSPs

- Theorem: If a constraint graph has no cycles, then the CSP can be solved in $O\left(n d^{\wedge} 2\right)$ time.
- Compare to general CSP: worst case $O\left(d^{\wedge} n\right)$
- Method: directed arc consistency (= dynamic programming)
- Select a root (e.g., A) \& do arc consistency from leaves to root:
- D! F: remove values for D not consistent with any value for F, etc.)
- D! E, B! D, ... etc
- Select a value for A

- There must be a value for B that is compatible; select it
- There must be values for C, and for D, compatible with B 's; select them
- There must be values for E, F compatible with D's; select them.
- You've found a consistent solution!

Exploiting structure

- How can we use efficiency of trees?
- Cutset conditioning
- Exploit easy-to-solve problems during search

Tree!

- Tree decomposition
- Convert non-tree problems into (harder) trees

Change "variables"
= color of pair of areas

Summary

- CSPs
- special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- Backtracking = depth-first search, one variable assigned per node
- Heuristics: variable order \& value selection heuristics help a lot
- Constraint propagation
- does additional work to constrain values and detect inconsistencies
- Works effectively when combined with heuristics
- Iterative min-conflicts is often effective in practice.
- Graph structure of CSPs determines problem complexity
- e.g., tree structured CSPs can be solved in linear time.

