CS-171, Intro to A.I. — Mid-term Exam — Fall Quarter, 2017

YOUR NAME:				
YOUR ID:	ID TO RIGHT:	ROW:	SEAT:	

Please turn off all cell phones now.

The exam will begin on the next page. Please, do not turn the page until told.

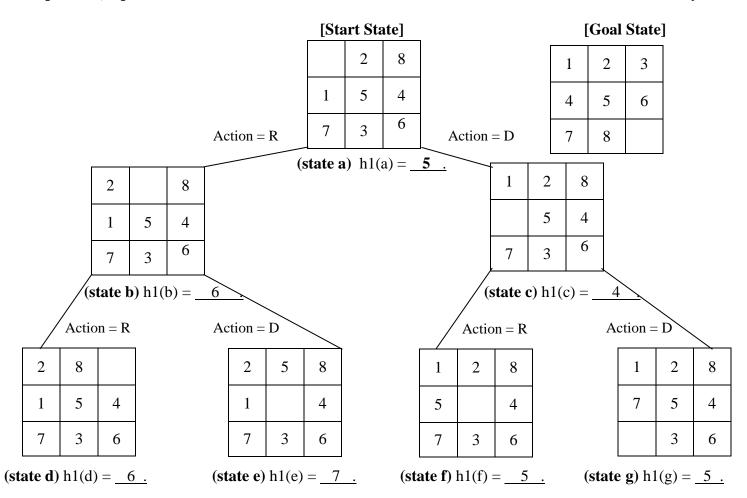
When you are told to begin the exam, please check first to make sure that you have all eight pages, as numbered 1-8 in the bottom-right corner of each page. We wish to avoid copy problems. We will supply a new exam for any copy problems.

The exam is closed-notes, closed-book. No calculators, cell phones, electronics.

Please clear your desk entirely, except for pen, pencil, eraser, a blank piece of paper (for scratch pad use), and an optional water bottle. Please write your name and ID# on the blank piece of paper and turn it in with your exam.

You may turn in your Midterm exam and leave class when you are finished. Show your UCI ID to the CS-171 Teaching Staff for verification, and deposit your exam in the box at the front.

After you first stand up from your seat, your exam is over and must be turned in immediately.


This page summarizes the points for each question, so you can plan your time.

- 1. (10 pts total, 1 pt each) HILL-CLIMBING LOCAL SEARCH.
- 2. (16 pts total, 1 pt each) HILL-CLIMBING LOCAL SEARCH.
- 3. (16 pts total) CONSTRAINT SATISFACTION PROBLEMS (CSPs)
- 4. (16 pts total) A* HEURISTIC SEARCH
- 5. (6 pts total, 2 pts each) CONVERSION TO CNF
- 6. (10 pts total, -1 pt each wrong answer, but not negative) MINIMAX WITH ALPHA-BETA PRUNING
- 7. (8 pts total, 2 pts each) RESOLUTION OF CLAUSES
- 8. (8 pts total, 2 pts each) TASK ENVIRONMENT
- 9. (10 pts total, 1/2 pt each, fractional scores rounded up in your favor) SEARCH PROPERTIES

The Exam is printed on both sides to save trees! Work both sides of each page!

1. (10 pts total, 1 pt each) HILL-CLIMBING LOCAL SEARCH. You are a robot that is playing 8-Puzzle. The only actions are to move the blank cell UP (U), DOWN (D), RIGHT (R), or LEFT (L). The size of the game board is 3x3. The Start and Goal states are shown below. The heuristic value of a state is its number of misplaced tiles from the goal state (h1), which is the sum over each tile of {if it is in its goal position 0, else 1}. For instance, tile number 1 in the Start state is not in its goal position so counts 1, while tile number 2 is in its goal position so counts 0. The heuristic value of the Start State is: h1(Start) = 1 + 0 + 1 + 1 + 0 + 1 + 0 + 1 = 5.

1.a (6 pts total, 1 pt each) Fill in heuristic h1(n) values below (n = current node). The first is done for you.

1.b (1 pt) You are doing Hill-Climbing local search. In which state does the search terminate? _____C

1.c (3 pts total, 1 pt each) Answer True (T) or False (F) to the following questions:

<u>F</u> Hill climbing looks ahead beyond the immediate neighbors of the current state.

<u>F</u> Hill-climbing search always guarantees to find a globally optimal solution within finite time.

<u>T</u> Given a finite space and infinite time, Hill-climbing with random restart will find a globally optimal solution with probability 1.0.

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

2. (16 pts total, 1 pt ead The only actions are to 1 game board is 3x3. NOT

Note: In order to break the dependency of your answers to following sub-problems that depend upon your answers to previous sub-problems, your answer to following sub-problems will be graded based only upon your answer to the previous sub-problem.

[Start State]

1	8	4
7	3	2
5	6	

[Goal State]

1	2	3
4	5	6
7	8	

The heuristic value of each state is its <u>Manhattan distance</u> (**h2**) from the goal state, which is the sum of the <u>Manhattan distances of each tile from its goal position</u>. For instance, tile number 2 in the Start state requires two moves (L, U) in order to get to its goal position in the Goal state. The heuristic value of the Start State is.

$$h2(Start) = 0 + 2 + 2 + 3 + 2 + 2 + 1 + 2 = 14$$

For each sub-problem below, write the heuristic value of the state that results from actions U, D, R, L in the previous state (begin with the Start State above; if an action is not possible, write NONE). Then, write the action that Hill-Climbing would choose, and draw the resulting state as a new 8-Puzzle configuration.

2.a (4 pts total, 1 pt each; two values are done for you as examples)

h2(result(Start, U)) = 15. h2(result(Start, D)) = None h2(result(Start, R)) = None h2(result(Start, L)) = 13.

Chosen action (write one of U, D, R, or L) = $\mathbf{A1} = \underline{\mathbf{L}}$ result(Start, A1) = $\mathbf{S1} = \mathbf{S1}$

1	8	4
7	3	2
5		6

2.b (6 pts total, 1 pt each)

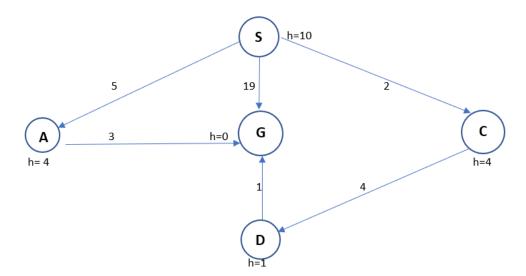
 $h2(result(\mathbf{S1}, \mathbf{U})) = \underline{14.} \quad h2(result(\mathbf{S1}, \mathbf{D})) = \underline{None} \quad h2(result(\mathbf{S1}, \mathbf{R})) = \underline{14.} \quad h2(result(\mathbf{S1}, \mathbf{L})) = \underline{12.}$

Chosen action (write one of U, D, R, or L) = $\mathbf{A2} = \underline{\mathbf{L}}$ result(S1, A2) = $\mathbf{S2} = \underline{\mathbf{S2}}$

1	8	4
7	3	2
	5	6

2.c (6 pts total, 1 pt each)

 $h2(result(\mathbf{S2}, \mathbf{U})) = \underline{11}$. $h2(result(\mathbf{S2}, \mathbf{D})) = \underline{None}$ $h2(result(\mathbf{S2}, \mathbf{R})) = \underline{13}$. $h2(result(\mathbf{S2}, \mathbf{L})) = \underline{None}$


Chosen action (write one of U, D, R, or L) = A3 = U result(S2, A3) = S3 = V

1	8	4
	3	2
7	5	6

building w The CSP v Ihler (A), v (a) (b) (c) (d) (e)	ith 6 faculty of ariables are single wayne Hayes No two profers $R > 3$ A is less than M is either 5 $R > M$	offices ix pro (W), ssors R or 6	. You fessor and C can sta	are a ros: Rick hen Li	Lathrough (C). The same (f) D (g) W (h) V (i) R	et is in charg p (R), Micha ne domains a room is even V is not 1 or o V-C = 1 -D = 2	e of roomel Good	om ass drich as {1,	signm (M), 2, 3, 4	ents. David 4, 5,	You cd Epps	choose stein (e con	e to us (D), A strain	se a CSP lexander ts are:
_	that is a Unar		_		ut not i	negative) Oi	iai y Co)115t1 (amus.	iviaii	XXVC	IOW U	y cac.	11
[]	a [X]b	•	[] c	[]	X] d	[]e	[X]	f	[X] g	[] h	[] i
Mark X b [] 3.c (5 pts to decoupling first. We a	main(R) = $\{4, \dots, K\}$ main(M) = $\{5, \dots, K\}$ main(D) = $\{2, \dots, K\}$ elow by each R [X] I total, -1 each g this problem ssign R the va	, 4, 6} varia M wron from thue R	ble the final property of the first term of the	uat miging [] wer, but solution Cross or	Domain Do	elected by the selection of the selectio	2, 3, 4, he MR C rward (bblem, a	5, 6} V heu Checlassum	xing (e we	FC). arbitı	For th	ne pur	poses e to as	ssign R
	Forward Ch			. = 6.		Domain(A	·) = (1	2	2	4	5	~	1
	$main(R) = \{$												^	}
	$main(M) = {$		• •			Domain(V						-		
Do	$main(D) = \{$	X.	4,	X	}	Domain(C	$C) = \{$	1,	2,	3,	4,	5,	X	}
Do (2 pts) Va 6 (2 pts) Ple	Everyone so Later, we w For now, it	ariable d was n assign cores ill cor is sim	cance gned F proble ne bac ply ca	D A Villed dual R = 4 and	e to and of the correct of the corre	error (a cor error (a cor 5, which viol , automatica em 3.d, for u	nreing Formation in the second	orwa said e con study	rd Ch R>M I strair	eckin but nt).	g their	r dom nin(C)	ains a $b = \{1$ $b \mathbf{b} \mathbf{b} \mathbf{L}$	nre: , 2, 3, 6} .CV:
If D=6, we	e eliminate 2 f e eliminate 6 f ng to the Leas	rom A	, 6 fro	om C, fe	or a tot	al of 2 value	s are re	move		ed fr	om un	assig	ned v	ariables.

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

4. (16 pts total) A* HEURISTIC SEARCH. Execute A* Tree Search through this graph (i.e., do not remember visited nodes). S is the start node and G is the goal node. Step costs are given next to each arc. Heuristic values are given next to each node (as h=x). The successors of each node are indicated by the arrows out of that node. Successors are returned in left-to-right order, i.e., successors of S are (A, G, C).

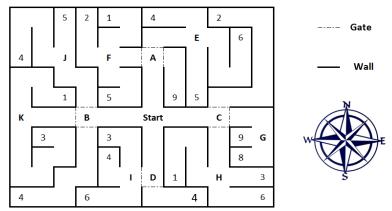
4.a (12 pts total) Show the order in which nodes are expanded in A* search (to expand a node means its children are generated), ending with the goal node found, or indicate the repeating cycle if the search gets stuck in a loop. Show the path from start to goal, or write "None." Give the cost of the path found, or write "None."

(8 pts) Order of node expansion:	S C D (G)	
-		
(3 pts) Path found: S C D (G)	(1 pt) Cost of path found:	7

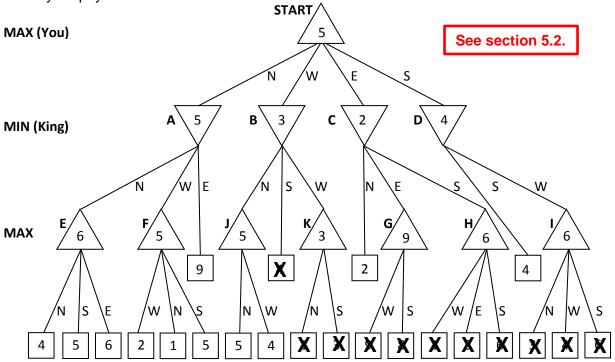
4.b (4 pts total) The A* search above actually has reached the goal node twice, once first with a bad score, and later with an optimal score. Please briefly explain why A* search does not always terminate when the first goal node is found, but instead delays until the optimal goal node is found and returned?

Even though a sub-optimal path to a goal node is reached early, there might be an optimal (= better) path to the goal whose cost is less. This possibility exists as long as there is any node whose heuristic value is less than that of the already-found but sub-optimal goal node, which will cause that node to sort in front of the sub-optimal goal node on the priority queue.

5. (6 pts total, 2 pts each) CONVERSION TO CNF. Convert these expressions to CNF.


5.a.
$$(2 \text{ pts}) (A \Leftrightarrow (B \lor C))$$
 See section 7.5.

5.b.
$$(2 \text{ pts}) ((C \land D) \Rightarrow \neg E) \underline{\qquad (\neg C \neg D \neg E)}$$


3.a is sentence S1, and 3.b is sentence S3, of problem 7.20, p. 283, in your 5.c. (2 pts) ((A \Rightarrow B) \Rightarrow C) ((AC)(\neg BC)) textbook, after variable relabeling.

6. (10 pts total, -1 pt each wrong answer, but not negative) MINIMAX WITH ALPHA-BETA PRUNING.

While visiting Crete, you are challenged by a passing king to what he calls the "Labyrinth Challenge". The rules are simple: you must make your way through a maze to find the largest prize for yourself. You are given the following map to plan your route:

You will start in the maze at the location labeled START and may travel North (N), South (S), East (E), or West (W). Your goal is to secure the largest, single prize for yourself, represented by the numbers spread across the maze. At four specific intersections (A, B, C, D), the king will be able to close off all but one pathway by closing gates around you, forcing you to take the path he gives you. Backtracking is not allowed. The king acts to minimize your payoff.

- 6.a. Fill in each blank triangle with its Mini-Max value. Process the game tree left-to-right.
- 6.b. Cross out each leaf node that will be pruned by Alpha-Beta pruning. Go left-to-right.
- 6.c. What is the best move for MAX? (write N, W, E, or S) N See section 5.3.

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

the resolvent simplifies to True write "True." Remember that (A B C) is sn	ortnand for (A or B or C).
7.a. (2 pts) Resolve(ABC)with(¬B)to yield <u>(AC)</u>	See section 7.5.
7.b. (2 pts) Resolve (A B C) with (¬B ¬C ¬D) to yield <u>True</u>	
7.c. (2 pts) Resolve (A B C) with (B ¬C ¬D) to yield(A B ¬D)	
7.d. (2 pts) Resolve (A B C) with (B C ¬D) to yield None	
8. (8 pts total, 2 pts each) TASK ENVIRONMENT. Your book define four things, with the acronym PEAS. Fill in the blanks See Section 2	

7. (8 pts total, 2 pts each) RESOLUTION OF CLAUSES. Use resolution to resolve the following pairs of clauses, simplify, and write the resulting clause in simplified form. If no resolution is possible write "None". If

9. (10 pts total, 1/2 pt each, fractional scores rounded up in your favor) SEARCH PROPERTIES. Fill in the values of the four evaluation criteria for each search strategy shown. Assume a tree search where b is the finite branching factor; d is the depth to the shallowest goal node; m is the maximum depth of the search tree; C^* is the cost of the optimal solution; step costs are identical and equal to some positive ϵ ; and in Bidirectional search both directions using breadth-first search

Actuators

Sensors

Note that these conditions satisfy all of the footnotes of Fig. 3.21 in y See Figure 3.21.

Criterion	Complete?	Time complexity	Space complexity	Optimal?
Breadth-First	Yes	O(b^d)	O(b^d)	Yes
Uniform-Cost	Yes	$O(b^{(1+floor(C^*/\epsilon))})$	$O(b^{(1+floor(C^*/\epsilon))})$	Yes
		O(b^(d+1)) also OK	O(b^(d+1)) also OK	
Depth-First	No	O(b^m)	O(bm)	No
Iterative Deepening	Yes	O(b^d)	O(bd)	Yes
Bidirectional	Yes	O(b^(d/2))	O(b^(d/2))	Yes
(if applicable)				

Environment

Performance (measure)

**** THIS IS THE END OF THE MID-TERM EXAM ****