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Introduction

» Go originated 2,500+ years ago
* Currently over 40 million players




_ VCline
Rules of Go

* Played on a 19x19 board

* Two players, black and white, each place
one stone per turn

» Capture the opponent’s stones by
surrounding them




Rules of Go

« Goal is to control as much territory as
possible.




Why is Go Challenging?

» Hundreds of legal moves from any
position, many of which are plausible

« Games can last hundreds of moves

* Unlike chess, endgames are too
complicated to solve exactly

* Heavily dependent on pattern recognition



Game Trees

 Agame tree is a directed graph whose
nodes are positions in a game and whose
edges are moves

* Fully searching this tree allows for best
move for simple games like Tic-Tac-Toe

« Complexity for tree O(b?), where b is the
branching factor (number of legal moves
per position), and d is its depth (the length
of the game)



Game Trees

« Chess: b=35, d=80, bd=108%°
« Go: b=250, d=150, bd=10170

o Size of search tree for Go is more than the
number of atoms in the universe!

* Brute force intractable



A Brief History of Computer Go

« 1997:. Super human chess w/ Alpha-Beta + fast computer
« 2005: Computer Go is impossible!

« 2006: Monte-Carlo Tree Search applied to 9x9 Go (bit of
learning)

« 2007: Human master level achieved at 9x9 Go (more learning)

« 2008: Human grandmaster level achieved at 9x9 Go (even
more learning)

« 2012: Zen program beats former international champion with
only 4 stone handicap in 19x19

« 2015: DeepMind’'s AlphaGo beats European Champion 5:0
« 2016: AlphaGo beats World Champion 4:1
« 2017: AlphaGo Zero beats AlphaGo 100:0
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THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

At last — a computer program that
can beat a champion Go player PAGE 484
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Techniques behind AlphaGo

* Deep learning + Monte Carlo Tree Search
+ High Performance Computing

* Learn from 30 million human expert moves
and 128,000+ self play games

e — p—

March 2016:
AlphaGo beats Lee Sedol 4-1
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Game Tree Search

» Good for 2-player zero-sum infinite
deterministic games of perfect information
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Game Tree Search

» Good for 2-player zero-sum finite
deterministic games of perfect information
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Conventional Game Tree Search

* Minimax algorithm with alpha-beta pruning
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» Effective
— When modest branching factor
— When a good heuristic value function is known
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Alpha-beta pruning for Go?

» Branching factor for Go is too large
— 250 moves on average

— Order of magnitude greater than the
branching factor of 35 for chess

» Lack of good evaluation function

— Too subtle to model: similar looking positions
can have completely different outcomes
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Monte-Carlo Tree Search

* Heuristic search algorithm for decision
trees

* Application to deterministic game pretty

recent (less than 10 years)
[+
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Basic Idea

* No evaluation function?

— Simulate game using
random moves

— Score game at the end,
keep winning statistics

— Play move with best
winning percentage

— Repeat

3 state s;
o V(m)=2/4=0.5

Simulations

Outcomes
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Monte Carlo Tree Search

(1) Selection

Selection policy is
applied recursively
until a leaf node is
reached 19



Monte Carlo Tree Search

(2) Expansion

One or more nodes
are created.



Monte Carlo Tree Search

(3) Simulation

One simulated game
v is played.



Monte Carlo Tree Search




Nalve Monte Carlo Tree Search

* Use simulation directly as an evaluation
function for alpha-beta pruning

* Problems for Go
— Single simulation is very noisy, only 0/1signal
— Running many simulations for one evaluation
IS very slow, e.g., typical speed for chess is 1
million eval/sec, for Go is only 25 eval/sec
* Result: MCTS is ignored for over 10 years
in computer Go
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Monte Carlo Tree Search

» Use results of simulation to guide the
growth of the game tree

* What moves are interesting to us?
— Promising moves (simulated and won most)

— Moves where uncertainty about evaluation are
high (less simulated)

* Seems two contradictory goals
— Theory of bandits can help
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Multi-Armed Bandit Problem

* Assumptions
— Choice of several arms
— Each arm pull is independent of other pulls
— Each arm has fixed, unknown average payoff

* Which arm has the best average payoff?
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Multi-Armed Bandit Problem

P(A wins)=45% P(B wins)=47% P(C wins)=30%
* But we don’t know the probability, how do
we choose a good one”?

« With infinite time, we may try each one for
infinite times to estimate the probability

* But in practice?
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Exploration strategy
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 Want to explore all arms
— We don’t want to miss any potentially good arm

— But, if we explore too much, may sacrifice the
reward we could have gotten

« \Want to exploit promising arms more often

— Good arms worth further investigation

— But, if we exploit too much, may get stuck with
sub-optimal values 27



Upper Confidence Bound

» Policy
— First, try each arm once

— Then, at each time step
e Choose the arm that maximizes formula:

U; —+ C X ln(N\l
\ M

value estimate num trials forarm i
tunable parameter

| N\

Prefers higher payoff arm Prefers less played arm .,

total number of trials




Schedule

* |ntroduction

 Monte-Carlo Tree Search

* Policy and Value Networks
* Results

29



Policy and Value Networks

« Goal: Reduce both branching factor and
depth of search tree

 How?
— Use policy network to explore better (and
fewer) moves
« How?
— Use value network to estimate lower branches
of tree (rather than simulating to the end)
« How?
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Policy and Value Networks

* Reducing branching factor: Policy Network
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Policy and Value Networks

Move probabilities

L . p,(als)
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Position

Predicts the probability of a move being best move
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Policy and Value Networks

* Supervised learning

Human expert Supervised Learning
positions policy network

* Training data: 30 million positions from human
expert games

* Likelihood of a human move selected at a state s
* Training time: 4 weeks

* Results: predicted human expert moves with 57%
accuracy
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Policy and Value Networks

* Reinforcement learning

Human expert Supervised Learning Reinforcement Learning
positions policy network policy network

pres .
' 4 O\

\ 4 _ Classification \ S\elip'ai"
* Training data: 128,000+ games of self-play using
policy network in 2 stages

 Training algorithm: maximize wins of the action
AOC

* Training time: 1 week

« Results: won more than 80% games vs.
subervised learnina
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Policy and Value Networks

* Reducing depth: Value Network

« AN AN e .« AL

* Given board states, estimate probability of victory
* No need to simulate to the end of the game
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Policy and Value Network

* Reinforced learning

Human expert Supervised Learning Reinforcement Learning Self-play data \altie network
positions policy network policy network
Y self Play a4 VSelf Play o
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Training data: 30 million games of self-play

Training algorithm: minimize mean-squared error
by stochastic gradient descent

Training time: 1 week
* Results: AlphaGo ready for playing against pros,,



MCTS + Policy / Value Networks

¢ Selection

%

Q + u(P)

IR
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P prior probability
O action value

Q+u(P)

* Initially no simulation yet, so action
value = 0, prefers high prior
probability and low visits count

* Asymptotically, prefers actions with
high action value.



MCTS + Policy / Value Networks

* Expansion
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p, Policy network
P prior probability




MCTS + Policy / Value Networks

« Simulation
. - Run multiple
simulations in parallel
@ i * Some with value
network

VH( %) @ « Some with rollout to
! the end of the game

v, Value network
r ( % ) r Game scorer
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MCTS + Policy / Value Networks

* Propagate values back to root

*
: O Action value
| v, Value network

% % %?% r Game scorer
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MCTS + Policy / Value Networks

* Repeat
* nd
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Selection
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AlphaGo Zero

* AlphaGo

— Supervised learning from human expert
Mmoves

— Reinforcement learning from self-play

* AlphaGo Zero
— Solely reinforcement learning from self-play
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Elo Rating

AlphaGo Zero

» Beats AlphaGo by 100:0
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AlphaGo Zero surpasses all other versions of AlphaGo
and, arguably, becomes the best Go player in the world.
It does this entirely from self-play, with no human
intervention and using no historical data.
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What's next for Al?

Go is still in the “easy” category of Al problem:s.

» Fully observable vs. partially observable
» Single agent vs. multiagent

» Deterministic vs. stochastic

» Episodic vs. sequential

» Static vs. dynamic

» Discrete vs. continuous

» Known vs. unknown
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What's next for Al?

DeepMind's Al is Struggling to Beat Starcraft Il - Bloomberg
https://www.bloomberg.com/.../deepmind-master-of-go-struggles-to-crack-its-next-mi... v

v

“Move to Beacon i) ' ~Collect Minerals and
Gas .

~Collect Mineral
Shards




What's next for Al?

The idea of combining search with learning is
very general and is widely applicable.
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