Intro Linear Algebra 3A: final exam Monday March 14 2016, 4-6 pm

There are 5 exercises, worth 100 = 14 + 23 + 23 + 20 + 20 points. Non-graphical calculators allowed. No books or notes allowed. Provide computations and or explanations.

Name:

Student ID:

Exercise 1 (14 pts) Compute the inverse of

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ -1 & 2 & 2 \\ 1 & 1 & 0 \end{array} \right].$$

Solution:

$$\mathbf{A}^{-1} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & 0\\ -\frac{2}{3} & \frac{1}{3} & 1\\ 1 & 0 & -1 \end{bmatrix}$$

Exercise 2 (23 = 6 + 2 + 10 + 5 pts)Let **A** be the following real 4×4 matrix:

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & 2 & 0 & 0 \\ -6 & 0 & 4 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

(a) Compute the characteristic polynomial of **A**.

(b) Show that 1 and 2 are the only eigenvalues of **A**.

(c) For each eigenvalue of A, compute a basis of the corresponding eigenspace.

(d) Is there an invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$?

If yes, find such a **P** and **D**. If no, explain why not.

Solution:

(a) $(t-1)(t-2)^3$.

(b) Follows from the factorization in a.

(c) $E_1 = \text{Span}([1, 0, 2, 0]^T)$ and $E_2 = \text{Span}([0, 1, 0, 0]^T, [1, 0, 0, 3]^T, [1, 0, 3, 0]^T).$ (d) Yes, dim E_1 + dim E_2 = 4. One can take

$$\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \ \mathbf{P} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 3 \\ 0 & 0 & 3 & 0 \end{bmatrix}.$$

Exercise 3 (23 = 9 + 6 + 3 + 5 pts)

Consider the subspace W of \mathbf{R}^4 given by the equations $x_1 + x_2 - x_3 = 0$ and $x_1 - 2x_3 - 2x_4 = 0$. Consider the vector $\mathbf{y} = [\sqrt{6}, 0, 0, 0]^T \in \mathbf{R}^4$.

(a) Find an orthonormal basis of W.

- (b) Compute the orthogonal projection $\operatorname{Proj}_W(\mathbf{y})$ of \mathbf{y} on W.
- (c) Compute the distance between \mathbf{y} and W.
- (d) Compute a basis of W^{\perp} .

Solution:

(a) The reduced row echelon form of the corresponding matrix is

$$\left[\begin{array}{rrrr} 1 & 0 & -2 & -2 \\ 0 & 1 & 1 & 2 \end{array}\right].$$

A basis is $\{[2, -1, 1, 0]^T, [2, -2, 0, 1]^T\}$. We apply Gram-Schmidt to find the orthonormal basis $\{1/\sqrt{6}[2, -1, 1, 0]^T, 1/\sqrt{3}[0, -1, -1, 1]^T\}$. (b) The orthogonal projection is $2/\sqrt{6}[2, -1, 1, 0]^T$ (use an orthogonal basis). (c) The distance is the length of $1/\sqrt{6}([6, 0, 0, 0]^T - 2[2, -1, 1, 0]^T) = 1/\sqrt{6}[2, 2, -2, 0]$,

which is $1/\sqrt{6}\sqrt{12} = \sqrt{2}$.

(d) One can simply take $\{[1, 1, -1, 0]^T, [1, 0, -2, -2]^T\}$ (the are the normal equations, and they are independent).

Exercise 4 (20 = 6 + 3 + 4 + 4 + 3 pts)

Let $c \in \mathbf{R}$ be a real number. Consider the real 3×3 matrix \mathbf{A}_c given by

$$\mathbf{A}_{c} = \begin{bmatrix} 0 & c & 2 \\ -1 & 0 & 1 \\ c & 1 & 1 \end{bmatrix}$$

- (a) Compute the determinant of \mathbf{A}_c .
- (b) For which c is \mathbf{A}_c not invertible?
- (c) For c = 1, compute a basis for Nul \mathbf{A}_c and a basis for Col \mathbf{A}_c .
- (d) For c = 0, compute a basis for Nul \mathbf{A}_c and a basis for Col \mathbf{A}_c .
- (e) Compute $\mathbf{A}_0\mathbf{A}_1$.

Solution:

- (a) $c^{2} + c 2 = (c 1)(c + 2)$.
- (b) Not invertible for c = 1, -2.

(c) We compute the reduced row echelon form:

$$\left[\begin{array}{rrrr} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{array}\right].$$

A basis for the column space is (columns corresponding to pivots) is $\{[0, -1, 1]^T, [1, 0, 1]^T\}$. A basis for the null space is given by $\{[1, -2, 1]^T\}$.

(d) The matrix is invertible, hence $\operatorname{Col} \mathbf{A}_c = \mathbf{R}^3$, and a basis is for example $\{[1,0,0]^T, [0,1,0]^T, [0,0,1]^T\}$. One has $\operatorname{Nul} \mathbf{A}_c = \{0\}$ and a basis is \emptyset (or you can say that a basis does not exist).

(e)

$$\left[\begin{array}{rrrr} 2 & 2 & 2 \\ 1 & 0 & -1 \\ 0 & 1 & 2 \end{array}\right]$$

Exercise 5 (20 pts)

True or false? No explanation required. Points = $3 \cdot \#$ correct - 10.

(1) Every square matrix over the complex numbers is diagonalizable.

(2) The map $\mathbb{R}^3 \to \mathbb{R}^3$ given by $(x, y, z) \mapsto (x + y, x - z, x^2 + 2 + y - 2 - 2z - x^2)$ is not linear.

(3) Let **A** be an $n \times n$ matrix with 2 as eigenvalue. Then $\mathbf{A}^2 - 2\mathbf{A}$ is not invertible.

(4) The null space of

[0	0	1	1	0	0	0	1]
$\left[\begin{array}{c} 0\\ 0\end{array}\right]$	0	2	2	0	0	2	2

is 5-dimensional.

(5) The real vectors

[1]		2
0	,	0.01
2		4

are linearly independent.

(6) Let \mathbf{A} be an $m \times n$ matrix with linearly independent columns. Let $\mathbf{b} \in \mathbf{R}^m$. Then there is a unique vector $\mathbf{x} \in \mathbf{R}^n$ which minimizes the distance between $\mathbf{A}\mathbf{x}$ and \mathbf{b} .

(7) Let **A** be an invertible $n \times n$ matrix. Then one has $1 = \det(\mathbf{A}^{-1}\mathbf{A}^T)$.

(8) The matrix

$$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

represents a reflection in the line y = x on the xy-plane.

(9) Let **A** be an $n \times m$ matrix and let **B** be an $m \times n$ matrix. Then one has dim Nul **AB** \geq dim Nul **B**.

(10) Let **A** be a complex $n \times n$ matrix. Assume that $\lambda \in \mathbf{C}$ is an eigenvalue of **A**. Then its conjugate, $\overline{\lambda}$, is also an eigenvalue of **A**.

Solution:

(1) False, for example

$$\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]$$

is not diagonalizable.

(2) False, the x^2 and 2 terms cancel out.

(3) True, for example, if x is an eigenvector at eigenvalue 2, then $(\mathbf{A}^2 - 2\mathbf{A})x = 0$,

so not invertible (or one can use multiplicity of determinant).

- (4) False, there are 6 free variables.
- (5) True, not a multiple of each other.

(6) True, one has $\mathbf{A}\mathbf{x}$ is the orthogonal projection on Col \mathbf{A} and since the columns

- are linearly independent, it follows that one has a unique $\mathbf{x}.$
- (7) True, $\det(A^{-1}A^T) = \det(A^{-1})\det(A^T) = \det(A)^{-1}\det(A) = 1.$
- (8) False, it is the line y = -x.
- (9) True, one even has $\operatorname{Nul} AB \supseteq \operatorname{Nul} B$.
- (10) False, (true for a real matrix), take the matrix [i].