Intro Linear Algebra 3A: final exam

Monday March 14 2016, 4-6 pm
There are 5 exercises, worth $100=14+23+23+20+20$ points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations.
Name:
Student ID:

Exercise 1 (14 pts)
Compute the inverse of

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 2 & 2 \\
1 & 1 & 0
\end{array}\right]
$$

Solution:

$$
\mathbf{A}^{-1}=\left[\begin{array}{rrr}
\frac{2}{3} & -\frac{1}{3} & 0 \\
-\frac{2}{3} & \frac{1}{3} & 1 \\
1 & 0 & -1
\end{array}\right]
$$

Exercise $2(23=6+2+10+5 \mathrm{pts})$
Let \mathbf{A} be the following real 4×4 matrix:

$$
\mathbf{A}=\left[\begin{array}{cccc}
-1 & 0 & 1 & 1 \\
0 & 2 & 0 & 0 \\
-6 & 0 & 4 & 2 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

(a) Compute the characteristic polynomial of \mathbf{A}.
(b) Show that 1 and 2 are the only eigenvalues of \mathbf{A}.
(c) For each eigenvalue of \mathbf{A}, compute a basis of the corresponding eigenspace.
(d) Is there an invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A}=\mathbf{P D P} \mathbf{P}^{-1}$? If yes, find such a \mathbf{P} and \mathbf{D}. If no, explain why not.

Solution:

(a) $(t-1)(t-2)^{3}$.
(b) Follows from the factorization in a.
(c) $E_{1}=\operatorname{Span}\left([1,0,2,0]^{T}\right)$ and $E_{2}=\operatorname{Span}\left([0,1,0,0]^{T},[1,0,0,3]^{T},[1,0,3,0]^{T}\right)$.
(d) Yes, $\operatorname{dim} E_{1}+\operatorname{dim} E_{2}=4$. One can take

$$
\mathbf{D}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right], \mathbf{P}=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
2 & 0 & 0 & 3 \\
0 & 0 & 3 & 0
\end{array}\right]
$$

Exercise 3 ($23=9+6+3+5 \mathrm{pts}$)
Consider the subspace W of \mathbf{R}^{4} given by the equations $x_{1}+x_{2}-x_{3}=0$ and $x_{1}-2 x_{3}-2 x_{4}=0$. Consider the vector $\mathbf{y}=[\sqrt{6}, 0,0,0]^{T} \in \mathbf{R}^{4}$.
(a) Find an orthonormal basis of W.
(b) Compute the orthogonal projection $\operatorname{Proj}_{W}(\mathbf{y})$ of \mathbf{y} on W.
(c) Compute the distance between \mathbf{y} and W.
(d) Compute a basis of W^{\perp}.

Solution:

(a) The reduced row echelon form of the corresponding matrix is

$$
\left[\begin{array}{cccc}
1 & 0 & -2 & -2 \\
0 & 1 & 1 & 2
\end{array}\right]
$$

A basis is $\left\{[2,-1,1,0]^{T},[2,-2,0,1]^{T}\right\}$. We apply Gram-Schmidt to find the orthonormal basis $\left\{1 / \sqrt{6}[2,-1,1,0]^{T}, 1 / \sqrt{3}[0,-1,-1,1]^{T}\right\}$.
(b) The orthogonal projection is $2 / \sqrt{6}[2,-1,1,0]^{T}$ (use an orthogonal basis).
(c) The distance is the length of $1 / \sqrt{6}\left([6,0,0,0]^{T}-2[2,-1,1,0]^{T}\right)=1 / \sqrt{6}[2,2,-2,0]$, which is $1 / \sqrt{6} \sqrt{12}=\sqrt{2}$.
(d) One can simply take $\left\{[1,1,-1,0]^{T},[1,0,-2,-2]^{T}\right\}$ (the are the normal equations, and they are independent).

Exercise $4(20=6+3+4+4+3$ pts $)$
Let $c \in \mathbf{R}$ be a real number. Consider the real 3×3 matrix \mathbf{A}_{c} given by

$$
\mathbf{A}_{c}=\left[\begin{array}{ccc}
0 & c & 2 \\
-1 & 0 & 1 \\
c & 1 & 1
\end{array}\right]
$$

(a) Compute the determinant of \mathbf{A}_{c}.
(b) For which c is \mathbf{A}_{c} not invertible?
(c) For $c=1$, compute a basis for $\mathrm{Nul} \mathbf{A}_{c}$ and a basis for $\operatorname{Col} \mathbf{A}_{c}$.
(d) For $c=0$, compute a basis for $\operatorname{Nul} \mathbf{A}_{c}$ and a basis for $\operatorname{Col} \mathbf{A}_{c}$.
(e) Compute $\mathbf{A}_{0} \mathbf{A}_{1}$.

Solution:

(a) $c^{2}+c-2=(c-1)(c+2)$.
(b) Not invertible for $c=1,-2$.
(c) We compute the reduced row echelon form:

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

A basis for the column space is (columns corresponding to pivots) is $\left\{[0,-1,1]^{T},[1,0,1]^{T}\right\}$. A basis for the null space is given by $\left\{[1,-2,1]^{T}\right\}$.
(d) The matrix is invertible, hence $\operatorname{Col} \mathbf{A}_{c}=\mathbf{R}^{3}$, and a basis is for example $\left\{[1,0,0]^{T},[0,1,0]^{T},[0,0,1]^{T}\right\}$. One has $\operatorname{Nul} \mathbf{A}_{c}=\{0\}$ and a basis is \emptyset (or you can say that a basis does not exist).
(e)

$$
\left[\begin{array}{ccc}
2 & 2 & 2 \\
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right]
$$

Exercise 5 (20 pts)
True or false? No explanation required. Points $=3 \cdot \#$ correct -10 .
(1) Every square matrix over the complex numbers is diagonalizable.
(2) The map $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by $(x, y, z) \mapsto\left(x+y, x-z, x^{2}+2+y-2-2 z-x^{2}\right)$ is not linear.
(3) Let \mathbf{A} be an $n \times n$ matrix with 2 as eigenvalue. Then $\mathbf{A}^{2}-2 \mathbf{A}$ is not invertible.
(4) The null space of

$$
\left[\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & 2 & 0 & 0 & 2 & 2
\end{array}\right]
$$

is 5 -dimensional.
(5) The real vectors

$$
\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
0.01 \\
4
\end{array}\right]
$$

are linearly independent.
(6) Let \mathbf{A} be an $m \times n$ matrix with linearly independent columns. Let $\mathbf{b} \in \mathbf{R}^{m}$. Then there is a unique vector $\mathbf{x} \in \mathbf{R}^{n}$ which minimizes the distance between $\mathbf{A x}$ and \mathbf{b}.
(7) Let \mathbf{A} be an invertible $n \times n$ matrix. Then one has $1=\operatorname{det}\left(\mathbf{A}^{-1} \mathbf{A}^{T}\right)$.
(8) The matrix

$$
\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

represents a reflection in the line $y=x$ on the $x y$-plane.
(9) Let \mathbf{A} be an $n \times m$ matrix and let \mathbf{B} be an $m \times n$ matrix. Then one has $\operatorname{dim} \operatorname{Nul} \mathbf{A B} \geq \operatorname{dim} \operatorname{Nul} \mathbf{B}$.
(10) Let \mathbf{A} be a complex $n \times n$ matrix. Assume that $\lambda \in \mathbf{C}$ is an eigenvalue of \mathbf{A}. Then its conjugate, $\bar{\lambda}$, is also an eigenvalue of \mathbf{A}.

Solution:

(1) False, for example

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

is not diagonalizable.
(2) False, the x^{2} and 2 terms cancel out.
(3) True, for example, if x is an eigenvector at eigenvalue 2 , then $\left(\mathbf{A}^{2}-2 \mathbf{A}\right) x=0$, so not invertible (or one can use multiplicity of determinant).
(4) False, there are 6 free variables.
(5) True, not a multiple of each other.
(6) True, one has $\mathbf{A x}$ is the orthogonal projection on $\operatorname{Col} \mathbf{A}$ and since the columns are linearly independent, it follows that one has a unique \mathbf{x}.
(7) True, $\operatorname{det}\left(A^{-1} A^{T}\right)=\operatorname{det}\left(A^{-1}\right) \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)^{-1} \operatorname{det}(A)=1$.
(8) False, it is the line $y=-x$.
(9) True, one even has Nul $A B \supseteq \operatorname{Nul} B$.
(10) False, (true for a real matrix), take the matrix $[i]$.

