Intro Linear Algebra 3A: midterm 2

Friday November 13, 5:00-5:50pm November 13, 2015

Short answers.

Exercise 1

(a) $4 c-4$. Matrix is invertible if $c \neq 1$.
(b)

$$
\left[\begin{array}{rrr}
-1 & -\frac{1}{2} & 1 \\
1 & 1 & -1 \\
\frac{3}{2} & \frac{3}{4} & -1
\end{array}\right]
$$

(c) $[1,-3,-1]^{T}$ (just multiply A_{0}^{-1} by b).

Exercise 2
(a) $[1,-2,1,0,0]^{T},[2,-3,0,1,0]^{T},[3,-4,0,0,1]^{T}$. Dimension is 3 .
(b) Pivot columns of matrix: $[1,6,11]^{T},[2,7,12]^{T}$, dimension 2 , which is by definition the same as the rank.
(c) Free variables: not one-to-one, zero row: not onto.
(d) Relations preserved in reduced row echelon form: $-3[1,6,11]^{T}+4[2,7,12]^{T}=$ $[5,10,15]^{T}$.

Exercise 3

(a) Characteristic polynomial is $(2-\lambda)(2-\lambda)(1-\lambda)$ (easy to compute). Hence eigenvalues are 2 and 1.
(b) For 2: $\operatorname{Span}\left([1,0,0]^{T},[0,1,3]^{T}\right)$. For 1: $\operatorname{Span}\left([1,0,-1 / 2]^{T}\right)$.
(c) Yes (answer not unique):

$$
\begin{gathered}
D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \\
P=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 3 & -1 / 2
\end{array}\right]
\end{gathered}
$$

Exercise 4

(a) False, if $b \neq 0$, then 0 is not in the solution set.
(b) True. B is invertible if and only if B^{T} is invertible. B^{T} is invetible, if and only if its columns span \mathbf{R}^{n} (invertible matrix theorem).
(c) False: If $n \neq m$, this statement is false (statement is true for $=m$, see book).
(d) True: $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(B A)$.
(e) True: invertible if and only if nullspace is 0 if and only if 0 is not an eigenvalue.
(f) True: characteristic polynomial is of degree n, has at most n different zeros.

