Intro Linear Algebra 3A: midterm 2
Monday February 22 2016, 3:00- 3:50pm

There are 3 exercises, worth a total of 100 points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations.
Name:

Student ID:

Exercise 1 ($26=20+6$ pts $)$
Consider the 3×3 matrix \mathbf{A} and vector $\mathbf{b} \in \mathbf{R}^{3}$ given by

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & 0 & 1 \\
3 & 4 & 2 \\
4 & 2 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
2 \\
5 \\
10
\end{array}\right]
$$

(a) Compute \mathbf{A}^{-1} (warning: there will be fractions).
(b) Solve $\mathbf{A x}=\mathbf{b}$ using your answer to a.

Solution:

(a)

$$
\mathbf{A}^{-1}=\left[\begin{array}{rrr}
0 & -\frac{1}{5} & \frac{2}{5} \\
-\frac{1}{2} & \frac{1}{5} & \frac{1}{10} \\
1 & \frac{2}{5} & -\frac{4}{5}
\end{array}\right]=\frac{1}{10}\left[\begin{array}{ccc}
0 & -2 & 4 \\
-5 & 2 & 1 \\
10 & 4 & -8
\end{array}\right]
$$

(b) $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}=[3,1,-4]^{T}$.

Exercise $2(38=8+4+8+6+4+8 \mathrm{pts})$
Let $c \in \mathbf{R}$. Consider the 3×3 matrix and vector \mathbf{b} given by

$$
\mathbf{A}_{c}=\left[\begin{array}{lll}
c & 1 & 1 \\
1 & c & 1 \\
1 & 1 & c
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

(a) Compute the determinant of \mathbf{A}_{c}.
(b) Explain why \mathbf{A}_{c} is invertible if and only if $c \neq 1,-2$.
(c) For $c=1$, compute a basis for the null space and the column space of \mathbf{A}_{c}.
(d) For $c=-2$, what is rank \mathbf{A}_{c} and $\operatorname{dim} \operatorname{Nul} \mathbf{A}_{c}$?
(e) For $c \neq 1,-2$, what is $\operatorname{rank} \mathbf{A}_{c}$ and $\operatorname{dim} \operatorname{Nul} \mathbf{A}_{c}$?
(f) For $c=0$, consider the equation $\mathbf{A}_{c} \mathbf{x}=\mathbf{b}$. Let $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]^{T}$ be the unique solution. Use Cramer's rule to find x_{2}.

Solution:

(a) $c^{3}-3 c+2=(c-1)^{2}(c+2)$.
(b) See factorization in a, the determinant is nonzero.
(c) Basis for null space is $\left\{[-1,0,1]^{T},[-1,1,0]^{T}\right\}$, and a basis for the column space is $\left\{[1,1,1]^{T}\right\}$.
(d) Rank is 2 (it is not 3, and first and second column are linearly independent), dimension null space is 1 (because dimensions of null space plus rank is 3).
(e) The matrix is invertible, rank 3 , and dimension null space is 0 .
(f) One has $\operatorname{det}\left(A_{0}\right)=2$. One computes
$\left|\begin{array}{lll}0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 0\end{array}\right|=2$.

One finds $x_{2}=2 / 2=1$. In fact, the solution is $[2,1,0]^{T}$.

Exercise 3 (36 pts)
True or false? No explanation required. Points: correct answer 3, incorrect answer -1 , no answer 0 .
(1) Let \mathbf{A} be an $n \times n$ matrix such that $\mathbf{A}^{3}+2 \mathbf{A}^{2}+3 \mathbf{A}+4 I_{n}=0$. Then \mathbf{A} is invertible and one has $\mathbf{A}^{-1}=-\frac{\mathbf{A}^{2}+2 \mathbf{A}+3 I_{n}}{4}$.
(2) Let \mathbf{A} be a 3×2 matrix. Then there is never a 2×3 matrix \mathbf{B} such that $\mathbf{B A}=I_{2}$.
(3) Let \mathbf{A} be a 2×3 matrix. Then there is never a 3×2 matrix \mathbf{B} such that $\mathbf{B A}=I_{3}$.
(4) The plane in \mathbf{R}^{3} given by the equation $3 x+4 y+5 z=6$ is a subspace of \mathbf{R}^{3}.
(5) Consider the ordered basis $\mathfrak{B}=\left\{[0,1,0]^{T},[0,0,1]^{T},[1,0,0]^{T}\right\}$ of \mathbf{R}^{3}. Let $x=[1,2,3]^{T}$. Then one has $[x]_{\mathfrak{B}}=[1,2,3]^{T}$.
(6) Let V be a subspace of \mathbf{R}^{n}. Then one has $\operatorname{dim}(V) \leq n$.
(7) Let \mathbf{A} be an invertible matrix with all integer entries. Then all entries of $\operatorname{det}(\mathbf{A}) \mathbf{A}^{-1}$ are integers.
(8) Let S be a region of \mathbf{R}^{3} with finite volume. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear map determined by a matrix \mathbf{A}. Then the volume of $T(S)$ is the volume of S multiplied by $|\operatorname{det}(\mathbf{A})|$.
(9) Let \mathbf{A}, \mathbf{B} be 2×2 matrices with $\operatorname{det}(\mathbf{A})=2$, $\operatorname{det}(\mathbf{B})=3$. Then one has $\operatorname{det}\left(2 \mathbf{A}^{2} \mathbf{B} \mathbf{A}^{-1}\right)=12$.
(10) Let \mathbf{A} be an $n \times n$ matrix with 2 identical columns. Then one has $\operatorname{det}(\mathbf{A})=0$.
(11) Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ be m different eigenvectors of an $n \times n$ matrix \mathbf{A}. Then the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ are linearly independent.
(12) Let \mathbf{A} be an $n \times n$ matrix such that $\mathbf{A}^{2}=\mathbf{A}$. Let λ be an eigenvalue of \mathbf{A}. Then λ is 0 or 1 .

Solution:

(1) T. Multiply A by the proposed inverse.
(2) F. Sometimes, this happens:

$$
B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

(3) T. The null space of $B A$ contains the null space of A, which is non-trivial.
(4) F. A subspace should contain 0 .
(5) F. One has $[x]_{\mathfrak{B}}=[2,3,1]^{T}$.
(6) T. True. More than n vectors in \mathbf{R}^{n} are dependent.
(7) T. Look at the formula of Cramer's rule for the inverse.
(8) T. True, see book.
(9) F. The determinant is 24 .
(10) T . One has $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$. One can create a zero row in A^{T} showing that the determinant is zero.
(11) F. If x is an eigenvector, then $x, 2 x$ are dependent (it is true if the eigenvalues are different.
(12) T. If $A^{2}=A$, and x is an eigenvector with eigenvalue λ, then $\lambda^{2} x=A^{2} x=$ $A x=\lambda x$. Since $x \neq 0$, we have $\lambda^{2}=\lambda$, so $\lambda=0,1$.

