Remark: the exercise below will be graded carefully. Give explanations and computations.

Exercise 1

Consider the matrix $A=\left[\begin{array}{lllll}1 & 2 & 1 & 1 & 1 \\ 3 & 6 & 0 & 3 & 1 \\ 2 & 4 & 2 & 1 & 1\end{array}\right]$ and vector $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Finally, consider the vector

$$
\mathbf{c}=\left[\begin{array}{c}
1 \\
-1 \\
2 \\
1 \\
3
\end{array}\right]
$$

a) Compute $A \mathbf{c}$.
b) Find the solution(s) of the equation

$$
A \mathbf{x}=\mathbf{b}
$$

in parametric vector form.
c) Find the solution(s) of the equation

$$
A \mathbf{x}=\mathbf{0}
$$

in parametric vector form.
d) Determine whether the first, second and fourth columns of A are linearly independent or not.
e) Let $T: \mathbf{R}^{5} \rightarrow \mathbf{R}^{3}$ be the linear transformation whose standard matrix is A. Is T one-to-one? Is T onto? Recall: onto if and only if reduced row echelon form of corresponding matrix A has no zero row, and one-to-one if every column of A has a pivot.

