Intro Linear Algebra 3A: midterm 1
Monday January 29 2018, 3:00-3.50 pm
There are 5 exercises, worth a total of 40 points.
No calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise $1(12=2+5+3+2 \mathrm{pts})$
Let

$$
A=\left[\begin{array}{rrrr}
3 & 2 & -1 & 3 \\
0 & 2 & 0 & 2 \\
1 & 0 & -1 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
7 \\
4 \\
1
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
1 \\
3 \\
2 \\
-1
\end{array}\right]
$$

(a) Compute $A \mathbf{u}$.
(b) Compute the reduced row echelon form of the augmented matrix $[A \mid \mathbf{b}]$.
(c) Solve $A \mathbf{x}=\mathbf{b}$ in parametric vector form.
(d) Solve $A \mathbf{x}=\mathbf{0}$ in parametric vector form.

Solution:

(a) $[4,4,-2]^{T}$.
(b)

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

(c) $[1,2,0,0]^{T}+x_{4}[0,-1,1,1]^{T}$.
(d) $x_{4}[0,-1,1,1]^{T}$.

Exercise $2(8=2+2+2+2$ pts $)$
Let $c \in \mathbf{R}$. Consider the vectors

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
1
\end{array}\right], \mathbf{u}_{4}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
c
\end{array}\right]
$$

(a1) For which c are the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ linearly dependent?
(a2) For each c as in part (a1) find a dependence relation.
(b1) For which c is the span of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$ not equal to \mathbf{R}^{4} ?
(b2) For each c as in part (b1) find a vector which is not in the span of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$.

Solution:

(a1) $c=1$.
(a2) $\mathbf{u}_{3}-\mathbf{u}_{4}=0$.
(b1) $c=1$.
(b2) Any vector $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$ with $x_{3} \neq x_{4}$ will do, such as $[0,0,0,1]^{T}$.
Exercise 3 ($6=2+2+2 \mathrm{pts})$
Consider the matrix and vector

$$
A=\left[\begin{array}{llll}
2 & 0 & 3 & 4 \\
0 & 5 & 0 & 6 \\
0 & 0 & 0 & 7
\end{array}\right], \mathbf{u}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

Let $T: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ be the linear map which sends \mathbf{x} to $A \mathbf{x}$.
(a) Compute $T(\mathbf{u})$.
(b) Is T onto?
(c) Is T one-to-one?

Solution:

(a) $[9,6,7]^{T}$.
(b) Yes, pivot in every row.
(c) No, free variables.

Exercise 4 (4 pts)
Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear map such that

$$
T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], T\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right], T\left(\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]
$$

Compute the standard matrix of T.

Solution:

$$
\left[\begin{array}{rrr}
0 & 1 & 1 \\
-4 & 2 & 4 \\
3 & 3 & 0
\end{array}\right]
$$

Exercise 5 (10 pts)
True or false? No explanation required. Each question is worth 1 point.
(1) There is a 10×8 matrix with 9 pivots.
(2) Every matrix has a unique reduced row echelon form.
(3) Let $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{7}$. Then $2(\mathbf{u}-7 \mathbf{v})+3 \mathbf{v}=2 \mathbf{u}-10 \mathbf{v}$.
(4) The vectors $[1,2,3,4,5]^{T},[2,4,6,8,10]^{T}$ and $[1,5,12,1232,1]^{T}$ are linearly dependent.
(5) Let A be an $n \times n$ matrix. If the equation $A \mathbf{x}=\mathbf{0}$ has a non-trivial solution, then the span of the columns of A is not \mathbf{R}^{n}.
(6) The matrix equation $A \mathbf{x}=\mathbf{b}$ always has a solution.
(7) The matrix of reflection through the line $x_{2}=-x_{1}$ is given by $A=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$.
(8) Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{x}$ be vectors in \mathbf{R}^{7}. If $\mathbf{x} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, then $\mathbf{x} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
(9) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a map. Then there is a matrix A such that $T(\mathbf{x})=A \mathbf{x}$
for all $\mathbf{x} \in \mathbf{R}^{n}$.
(10) The matrices

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right], B=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
0 & 1 & 1 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

have the same reduced row echelon form.

Solution:

(1) False.
(2) True.
(3) False.
(4) True.
(5) True.
(6) False.
(7) True.
(8) True.
(9) False.
(10) False.

