Remark: the exercise below will be graded carefully. Give explanations and computations.

Exercise 1 (4 points)

(a) Let A be an $n \times n$ matrix which in invertible. Prove that $A^T A$ is invertible. Be sure to justify each step in your proof completely.

(b) Find a 2×2 matrix A with Nul(A) = Col(A). Does such an example exist when A is a 3×3 matrix?

Exercise 2 (6 points) Consider the matrix

(a) Compute the reduced row echelon form of A. (2 points)

(b) Find a basis of the null space of A. (1 point)

(c) What is the dimension of the null space of A? (1/2 point)

(d) Find a basis of the column space of A. (1 point)

(e) What is the rank of A? (1/2 point)

(f) Find all possible subsets of the columns of A which form a basis of the column $\int A \left(i + 1 - 1 - i + i \right)$

space of A (tricky, 1 point).