Intro Linear Algebra 3A: final Monday March 19 2018, 4:00–6.00 pm

There are 7 exercises, worth a total of 97 points. No calculators allowed. No books or notes allowed. Provide computations and or explanations, unless stated otherwise.

Name:

Student ID:

Exercise 1 (15 = 4 + 1 + 5 + 2 + 3 pts)Let $x \in \mathbf{R}$. Consider the matrix

$$A_x = \left[\begin{array}{rrrr} 4 & x & 3 & -3 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{array} \right].$$

(a) Compute the characteristic polynomial of A_x (you can leave your answer in the form $(4 - \lambda)(a\lambda^3 + b\lambda^2 + c\lambda + d))$.

(b) Show that 1, 1, 4, 4 are the eigenvalues of A_x .

(c) Compute a basis for each eigenspace of A_0 .

(d) Show that A_0 is diagonalizable and write $A_0 = PDP^{-1}$ where P is an invertible matrix and D is a diagonal matrix.

(e) (tricky) For which x is A_x diagonalizable?

Solution:

(a) $(\lambda - 4)^2 (\lambda - 1)^2$.

(b) See a.

(c) E_4 has basis { $[1, 0, 0, 0]^T$, $[0, 1, 1, 1]^T$ }, E_1 has basis { $[-1, -1, 1, 0]^T$, $[1, -1, 0, 1]^T$ }. (d)

$$P = \left[\begin{array}{rrrr} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array} \right]$$

and

$$D = \left[\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

(e) Only for x = 0.

Exercise 2 (19 = 5 + 2 + 3 + 2 + 4 + 3 pts)Consider the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 2\\2\\0\\0 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \ \mathbf{v}_4 = \begin{bmatrix} 0\\2\\2\\0 \end{bmatrix} \in \mathbf{R}^4.$$

Let $\mathbf{w} = [4, 0, 0, 0]^T$. Let $U = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}.$

(a) Compute an orthogonal basis of U (hint: U has dimension 3 and a basis never contains a 0-vector).

- (b) Compute an orthonormal basis of U.
- (c) Compute the orthogonal projection of \mathbf{w} on U.
- (d) What is the distance from \mathbf{w} to U?
- (e) Find a basis for U^{\perp} .
- (f) (tricky) Construct a matrix A with Nul(A) = U.

Solution:

(a) $\{[1,1,1,1]^T, [1,1,-1,-1]^T, [-1,1,1,-1]^T\}.$ (b) $\{1/2[1,1,1,1]^T, 1/2[1,1,-1,-1]^T, 1/2[-1,1,1,-1]^T\}$ (c) $[3,1,-1,1]^T.$ (d) 2. (e) $\{[1, -1, 1, -1]^T\}.$

(f) [1 - 1 1 - 1].

Exercise 3 (6 pts)

Compute the determinant of

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 2 & 2 \\ 1 & 3 & 0 & -1 & 0 \\ 1 & 0 & 2 & -2 & 0 \end{bmatrix}$$

No partial credit will be given.

Solution:

60.

Exercise 4 (19 = 3 + 6 + 6 + 4 pts)Consider the vectors $\mathbf{u}_1 = [1, 1, 1]^T$, $\mathbf{u}_2 = [1, 1, 0]^T$, $\mathbf{u}_3 = [1, 2, 3]^T$. Let $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Let T be the linear map with $T(\mathbf{u}_1) = \mathbf{u}_2$, $T(\mathbf{u}_2) = \mathbf{u}_3$ and $T(\mathbf{u}_3) = \mathbf{u}_1$.

(a) Show that \mathcal{B} is a basis of \mathbb{R}^3 .

(b) Consider the 3×3 matrix $B = [\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3]$. Compute B^{-1} using Cramer's rule.

(c) Compute the standard matrix of T.

(d) Compute the matrix of T in basis \mathcal{B} , that is, compute $[T]_{\mathcal{B}}$.

Solution:

(c)

(d)

(a) det(B) = 1, so invertible and hence \mathcal{B} is a basis. (b)

$$\begin{bmatrix} 3 & -3 & 1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{bmatrix}.$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ -4 & 7 & -3 \end{bmatrix}.$$
$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

Exercise 5 (10 = 5 + 1 + 3 + 1 pts)Consider the matrix

	0	1	1	0	0	3	1
A =	0	0	0	1	0	2	.
	0	0	0	0	1	1	

(a) Compute a basis for the null space of A.

(b) What is the dimension of the null space of A?

(c) Compute a basis for the column space of A.

(d) What is the dimension of the column space of A?

Solution:

4

(a) $\{[1, 0, 0, 0, 0, 0]^T, [0, -1, 1, 0, 0, 0]^T, [0, -3, 0, -2, -1, 1]^T\}$. (b) 3 (c) $\{[1, 0, 0]^T, [0, 1, 0]^T, [0, 0, 1]^T\}$. (d) 3

Exercise 6 (4 pts)

Let A be an $n \times n$ matrix such that $A^m = 0$ for some positive integer m. Show that if λ is an eigenvalue of A, then $\lambda = 0$. Give a full proof.

Solution:

If **x** is an eigenvector, with $A\mathbf{x} = \lambda \mathbf{x}$. Then $0 = A^n \mathbf{x} = \lambda^n \mathbf{x}$. So $\lambda = 0$. Hence all the eigenvalues are 0.

Exercise 7 (24 pts)

True or false? No explanation needed. Each question is worth 2 points.

(1) Let $S = {\mathbf{v}_1, \ldots, \mathbf{v}_m} \subset \mathbf{R}^n$ be a set of orthogonal vectors. Then S is linearly independent.

(2) Every subspace of \mathbf{R}^n has a unique orthonormal basis.

(3) Let U be an $m \times n$ matrix with orthonormal columns and let $\mathbf{x}, \mathbf{y} \in \mathbf{R}^n$. Then $\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \operatorname{dist}(U\mathbf{x}, U\mathbf{y})$ where dist denotes distance.

(4) Let U be a 3×3 orthogonal matrix. Then the corresponding linear map preserves volumes.

(5) Let A be a square matrix such that $A^2 + A + 3I = 0$. Then A is invertible and $A^{-1} = \frac{A^2 + A}{2}$.

(6) Let A and B be similar matrices. If A is diagonalizable, then B is diagonalizable.

(7) Let A be an invertible $n \times n$ matrix and assume that det(A) = det(-A). Then n is odd.

(8) Let A be an invertible matrix. Then $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.

(9) Let $T : \mathbf{R}^2 \to \mathbf{R}^2$ be the linear map which is the reflection in the *x*-axis. Let *S* be the linear map which is a reflection in the *y*-axis. Then the standard matrix of $S \circ T$ is $-I_2$.

(10) Let W be a subspace of \mathbf{R}^n . Let $\mathbf{v}_1, \ldots, \mathbf{v}_m \in W$. Assume that $\{\mathbf{v}_1, \ldots, \mathbf{v}_{m-1}\}$ is a basis of W. Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ is a basis of W.

(11) Let A be a 2×2 matrix and let $\mathbf{x} \in \mathbf{R}^2$. Then $||A\mathbf{x}|| = |\det(A)| \cdot ||\mathbf{x}||$.

(12) Let $\mathbf{u} \in \mathbf{R}^n$. Then the map $T : \mathbf{R}^n \to \mathbf{R}^n$ defined by $T(\mathbf{x}) = \mathbf{x} + \mathbf{u}$ is a linear map.

Solution:

- (1) False.
- (2) False.
- (3) True.
- (4) True.
- (5) False.
- (6) True.

- (7) False.(8) True.

- (9) True.(10) False.
- (11) False.(12) False.