Intro Linear Algebra 3A: final Monday March 19 2018, 4:00-6.00 pm

There are 7 exercises, worth a total of 97 points.
No calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.
Name:
Student ID:

Exercise $1(15=4+1+5+2+3 \mathrm{pts})$
Let $x \in \mathbf{R}$. Consider the matrix

$$
A_{x}=\left[\begin{array}{cccc}
4 & x & 3 & -3 \\
0 & 2 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 1 & 1 & 2
\end{array}\right]
$$

(a) Compute the characteristic polynomial of A_{x} (you can leave your answer in the form $\left.(4-\lambda)\left(a \lambda^{3}+b \lambda^{2}+c \lambda+d\right)\right)$.
(b) Show that 1, 1, 4, 4 are the eigenvalues of A_{x}.
(c) Compute a basis for each eigenspace of A_{0}.
(d) Show that A_{0} is diagonalizable and write $A_{0}=P D P^{-1}$ where P is an invertible matrix and D is a diagonal matrix.
(e) (tricky) For which x is A_{x} diagonalizable?

Solution:

(a) $(\lambda-4)^{2}(\lambda-1)^{2}$.
(b) See a.
(c) E_{4} has basis $\left\{[1,0,0,0]^{T},[0,1,1,1]^{T}\right\}, E_{1}$ has basis $\left\{[-1,-1,1,0]^{T},[1,-1,0,1]^{T}\right\}$. (d)

$$
P=\left[\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & -1 & -1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(e) Only for $x=0$.

Exercise $2(19=5+2+3+2+4+3$ pts $)$
Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
2 \\
0 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{l}
0 \\
2 \\
2 \\
0
\end{array}\right] \in \mathbf{R}^{4}
$$

Let $\mathbf{w}=[4,0,0,0]^{T}$. Let $U=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$.
(a) Compute an orthogonal basis of U (hint: U has dimension 3 and a basis never contains a 0 -vector).
(b) Compute an orthonormal basis of U.
(c) Compute the orthogonal projection of \mathbf{w} on U.
(d) What is the distance from \mathbf{w} to U ?
(e) Find a basis for U^{\perp}.
(f) (tricky) Construct a matrix A with $\operatorname{Nul}(A)=U$.

Solution:

(a) $\left\{[1,1,1,1]^{T},[1,1,-1,-1]^{T},[-1,1,1,-1]^{T}\right\}$.
(b) $\left\{1 / 2[1,1,1,1]^{T}, 1 / 2[1,1,-1,-1]^{T}, 1 / 2[-1,1,1,-1]^{T}\right\}$
(c) $[3,1,-1,1]^{T}$.
(d) 2 .
(e) $\left\{[1,-1,1,-1]^{T}\right\}$.
(f) $\left[\begin{array}{llll}1 & -1 & 1 & -1\end{array}\right]$.

Exercise 3 (6 pts)
Compute the determinant of

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 2 & 2 \\
1 & 3 & 0 & -1 & 0 \\
1 & 0 & 2 & -2 & 0
\end{array}\right]
$$

No partial credit will be given.

Solution:

60.

Exercise 4 (19 = $3+6+6+4$ pts $)$
Consider the vectors $\mathbf{u}_{1}=[1,1,1]^{T}, \mathbf{u}_{2}=[1,1,0]^{T}, \mathbf{u}_{3}=[1,2,3]^{T}$. Let $\mathcal{B}=$ $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$. Let T be the linear map with $T\left(\mathbf{u}_{1}\right)=\mathbf{u}_{2}, T\left(\mathbf{u}_{2}\right)=\mathbf{u}_{3}$ and $T\left(\mathbf{u}_{3}\right)=$ \mathbf{u}_{1}.
(a) Show that \mathcal{B} is a basis of \mathbf{R}^{3}.
(b) Consider the 3×3 matrix $B=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right]$. Compute B^{-1} using Cramer's rule.
(c) Compute the standard matrix of T.
(d) Compute the matrix of T in basis \mathcal{B}, that is, compute $[T]_{\mathcal{B}}$.

Solution:

(a) $\operatorname{det}(B)=1$, so invertible and hence \mathcal{B} is a basis.
(b)

$$
\left[\begin{array}{rrr}
3 & -3 & 1 \\
-1 & 2 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 2 & -1 \\
-4 & 7 & -3
\end{array}\right]
$$

(d)

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

Exercise 5 ($10=5+1+3+1$ pts)
Consider the matrix

$$
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 3 \\
0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

(a) Compute a basis for the null space of A.
(b) What is the dimension of the null space of A ?
(c) Compute a basis for the column space of A.
(d) What is the dimension of the column space of A ?

Solution:

(a) $\left\{[1,0,0,0,0,0]^{T},[0,-1,1,0,0,0]^{T},[0,-3,0,-2,-1,1]^{T}\right\}$.
(b) 3
(c) $\left\{[1,0,0]^{T},[0,1,0]^{T},[0,0,1]^{T}\right\}$.
(d) 3

Exercise 6 (4 pts)
Let A be an $n \times n$ matrix such that $A^{m}=0$ for some positive integer m. Show that if λ is an eigenvalue of A, then $\lambda=0$. Give a full proof.

Solution:

If \mathbf{x} is an eigenvector, with $A \mathbf{x}=\lambda \mathbf{x}$. Then $0=A^{n} \mathbf{x}=\lambda^{n} \mathbf{x}$. So $\lambda=0$. Hence all the eigenvalues are 0 .

Exercise 7 (24 pts)
True or false? No explanation needed. Each question is worth 2 points.
(1) Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\} \subset \mathbf{R}^{n}$ be a set of orthogonal vectors. Then S is linearly independent.
(2) Every subspace of \mathbf{R}^{n} has a unique orthonormal basis.
(3) Let U be an $m \times n$ matrix with orthonormal columns and let $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$. Then $\operatorname{dist}(\mathbf{x}, \mathbf{y})=\operatorname{dist}(U \mathbf{x}, U \mathbf{y})$ where dist denotes distance.
(4) Let U be a 3×3 orthogonal matrix. Then the corresponding linear map preserves volumes.
(5) Let A be a square matrix such that $A^{2}+A+3 I=0$. Then A is invertible and $A^{-1}=\frac{A^{2}+A}{3}$.
(6) Let A and B be similar matrices. If A is diagonalizable, then B is diagonalizable.
(7) Let A be an invertible $n \times n$ matrix and assume that $\operatorname{det}(A)=\operatorname{det}(-A)$. Then n is odd.
(8) Let A be an invertible matrix. Then $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
(9) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear map which is the reflection in the x-axis. Let S be the linear map which is a reflection in the y-axis. Then the standard matrix of $S \circ T$ is $-I_{2}$.
(10) Let W be a subspace of \mathbf{R}^{n}. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in W$. Assume that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m-1}\right\}$ is a basis of W. Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ is a basis of W.
(11) Let A be a 2×2 matrix and let $\mathbf{x} \in \mathbf{R}^{2}$. Then $\|A \mathbf{x}\|=|\operatorname{det}(A)| \cdot\|\mathbf{x}\|$.
(12) Let $\mathbf{u} \in \mathbf{R}^{n}$. Then the map $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ defined by $T(\mathbf{x})=\mathbf{x}+\mathbf{u}$ is a linear map.

Solution:

(1) False.
(2) False.
(3) True.
(4) True.
(5) False.
(6) True.
(7) False.
(8) True.
(9) True.
(10) False.
(11) False.
(12) False.

