Reinforcement Learning

PROF. ERIK SUDDERTH
WINTER 2018

CS 178: Machine Learning

courtesy Sameer Singh, based on slides by David Silva

Machine Learning

Intro to Reinforcement Learning

What makes it different?

No direct supervision, only rewards

Feedback is delayed, not instantaneous

Time really matters, i.e. data is sequential
Agent’s actions affect what data it will receive

* Fly stunt maneuvers in a helicopter

* Defeat the world champion at Backgammon or Go

* Manage an investment portfolio

* Control a power station

* Make a humanoid robot walk

* Play many different Atari games better than humans

Examples

Agent-Environment Interface

observation

e decides on an action
* receives next observation
* receives next reward

Environment

e executes the action
e computes next observation
 computes next reward

Reward, R,

+ positive (Good) Nothing about WHY it is
HOWtV}/eg the ’:egative (Bad) doing well, could have
agent is doin g : i
g g little to do with A, ;

Agent is trying to maximize its cumulative reward

Example of Rewards

* Fly stunt maneuvers in a helicopter
* +ve reward for following desired trajectory
* -ve reward for crashing
* Defeat the world champion at Backgammon
* +/-ve reward for winning/losing a game
* Manage an investment portfolio
* +ve reward for each S in bank
* Control a power station
* +ve reward for producing power
* -ve reward for exceeding safety thresholds
* Make a humanoid robot walk
* +ve reward for forward motion
* -ve reward for falling over
* Play many different Atari games better than humans
* +/-ve reward for increasing/decreasing score

Sequential Decision Making

Actions have long term consequences
Rewards may be delayed

May be better to sacrifice short term reward for long term benefit

« Afinancial investment (may take months to mature)

- Refueling a helicopter (might prevent a crash later)

* Blocking opponent moves (might eventually help win)

« Spend a lot of money and go to college (earn more later)
« Don’t commit crimes (rewarded by not going to jail)

» Qet started on final project early (avoid stress later)

Examples

A key aspect of intelligence: How far ahead are you able to plan?

Reinforcement Learning

Given an environment
(produces observations and rewards)

Reinforcement

Learning

Automated agent that selects actions
to maximize total rewards in the environment

Let’s look at the Agent

o - 2 :._\‘..:-)_/ 7‘3— .\lv‘.\\ -
AKX X N7\
; K‘/ ' ,V ',-’/ \ % 4'.\ / p \ ~\\.
f/ -~ \,/"'* \ r » _& ~ \\l
observation /. Y . . 0 A action
b A

What does the choice of action depend on?

¢ Can you ignore O, completely?
* Is just O, enough? Or (O,,A,)?

* |s it last few observations?

* |s it all observations so far?

Agent State, S,

agent state S}

History: everything that happened so far

observation

H, = O,R,A,0,R,A,0,R,,...,A_;OR,

State, S, can be O,
Oth

At-lot Rt
01302010,

You, as Al designer,

In general, 5 =f(H,) specify this function

Agent Policy, T

Current state ~ Next action
St A
Deterministic Policy: A; = m(S;)
Stochastic Policy: n(a|s) = P(A; = a|S; = s)

Good policy: Leads to larger cumulative reward
Bad policy: Leads to worse cumulative reward
(we will explore this later)

Example: Atari

N\
-, action

£,
observation Ve B

Rules are unknown

* What makes the score increase?
Dynamics are unknown

* How do actions change pixels?

Video Time

> »l o) 027/1:42

Google DeepMind's Deep Q-learning playing Atari Breakout

. Two Minute Papers
PAPERS Subscribed M @ 40,641 i
PAPERS i . 562,870 views

1570 B2

+ Add to A Share see More

https://www.youtube.com/watch?v=V1eYniJORnk

Example: Robotic Soccer

https://www.youtube.com/watch?v=CIF2SBVY-J0

15,617 views
+ ddddd AP Share see More |‘ 49 ’I 0

AlphaGo

https://www.youtube.com/watch?v=12WFvGIl4y8c

ALPHAGO
00:05:30

DOqle Deep o

Fi kR
1) AlICT(C

Overview of Lecture

States

Markov

Processes

+ Rewards

Markov Reward
Processes

+ Actions

Markov Decision
Processes

Machine Learning

Markov Property

“The future is independent of the past given the present”

Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

P[St41 | St] =P[Se41 | S1, .-y St]

Markov Property

“The future is independent of the past given the present”

A state S; is Markov if and only if

P[St41 | St] =P[Se41 | S1, .-y St]

m The state captures all relevant information from the history
m Once the state is known, the history may be thrown away

m i.e. The state is a sufficient statistic of the future

State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

Psss =P [St—i-l =5 | S¢ = S]

State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

Pesr =P [Sty1 =5 | S =]

State transition matrix P defines transition probabilities from all
states s to all successor states s/,

P = from

Pn]_ o o Pnn

where each row of the matrix sums to 1.

Vlarkov Processes

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, 5o, ... with the Markov property.

Vlarkov Processes

A Markov process is a memoryless random process, i.e. a sequence
of random states 51, 5,, ... with the Markov property.

A Markov Process (or Markov Chain) is a tuple (S, P)
m S is a (finite) set of states

m P is a state transition probability matrix,
Pss’ — IP) [5t+1 — S, | St — S]

Student Markov Chain

Student MC: Episodes

Sample episodes for Student Markov
Chain starting from §; = C1

0.9
51,5, ..., 5T
0.1

Student MC: Episodes

Sample episodes for Student Markov
Chain starting from §; = C1

51,5, ..., 5T

@ m C1 C2 C3 Pass Sleep
m C1 FB FB C1 C2 Sleep
m C1 C2 C3 Pub C2 C3 Pass Sleep

m C1FBFB C1C2C3PubCl1FBFB
FB C1 C2 C3 Pub C2 Sleep

Student MC: Transition Matrix

0.9
Sleep |—
0.1 C1 c2 C3 Pass Pub FB Sleep
cr T 0.5 0.5 i
c2 0.8 0.2
0.5 0.2 1.0 C3 0.6 0.4
@ 05 0.8 0.6 @ P = Pass 1.0
Pub 0.2 0.4 0.4
. FB 0.1 0.9
Sleep | 1

Machine Learning

| |

| |

Markov Reward Processes

Markov Reward Process

A Markov reward process is a Markov chain with values.

Markov Reward Process

A Markov reward process is a Markov chain with values.

A Markov Reward Process is a tuple (S,P,R,~)

m S is a finite set of states

m P is a state transition probability matrix,

Psss =P [Sty1 =5 | St = 5]
m R is a reward function, Rs = E[R;11 | St = 5]
m 7 is a discount factor, v € [0, 1]

The Student MRP

0.9

Facebook

Return

The return G; is the total discounted reward from time-step t.

@)
Ge = Rey1+YRep2 + oo =) 7V Reiert
k=0

Return

The return G; is the total discounted reward from time-step t.

@)
Ge = Rey1+YRep2 + oo =) 7V Reiert
k=0

m The discount v € [0,1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is Y*R.

Return

The return G; is the total discounted reward from time-step t.

©. @)
Gt = Rey1 +YReyo + .0 = Z’Yth+k+1
k=0

m The discount v € [0,1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is Y*R.

m This values immediate reward above delayed reward.

m v close to 0 leads to "myopic” evaluation
m v close to 1 leads to "far-sighted” evaluation

Why discount?

Most Markov reward and decision processes are discounted. Why?

Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards

m Avoids infinite returns in cyclic Markov processes

Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards
m Avoids infinite returns in cyclic Markov processes
m Uncertainty about the future may not be fully represented

m If the reward is financial, immediate rewards may earn more
interest than delayed rewards

Why discount?

Most Markov reward and decision processes are discounted. Why?

m Mathematically convenient to discount rewards

m Avoids infinite returns in cyclic Markov processes

m Uncertainty about the future may not be fully represented
m If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards
Avoids infinite returns in cyclic Markov processes

Uncertainty about the future may not be fully represented

If the reward is financial, immediate rewards may earn more
interest than delayed rewards

m Animal/human behaviour shows preference for immediate
reward

m It is sometimes possible to use undiscounted Markov reward
processes (i.e. v = 1), e.g. if all sequences terminate.

Value Function

The value function v(s) gives the long-term value of state s

Value Function

The value function v(s) gives the long-term value of state s

The state value function v(s) of an MRP is the expected return
starting from state s

v(s) =E[G; | St = 5]

Student MRP: Returns

Sample returns for Student MRP:

Starting from S; = C1 with v = %

Gi=Ry+~vR3+...+~v 2Rt

C1 C2 C3 Pass Sleep

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep
Cl1FBFBC1C2C3PubCl...
FB FB FB C1 C2 C3 Pub C2 Sleep

Student MRP: Returns

Sample returns for Student MRP:

Starting from S; = C1 with v = %

Gi=Ry+~vR3+...+~v 2Rt

C1 C2 C3 Pass Sleep vi=-—2—2%3 —2x%+10% 3 = —2.25

C1 FB FB C1 C2 Sleep vi=-2—1%x3—1x1—-2x1 -2l = —3.125

C1 C2 C3 Pub C2 C3 Pass Sleep vi=-—2-2%3 —2xr4+1xg—2x&... = —3.41
— 1 1 1 1

C1FBFB C1C2C3PubCl ... vi=—2-1xz—lxg—2%xg—2%g5.. _ .

FB FB FB C1 C2 C3 Pub C2 Sleep

Student MRP: Value Function

Student MRP: Value Function

Student MRP: Value Function

Bellman Equations for MRP

The value function can be decomposed into two parts:

m immediate reward R:y1

m discounted value of successor state yv(S¢+1)

v(s) =E[G; | 5; = 5]
=E [Rey1 + YRep2 + VP Revs + ... | St = 5]
=E[Rt+1 +7(Rex2 + YRt43 +...) | St = 5]
= E[Rty1 +7vGeq1 | St = 9]
= E[Rer1 +vyv(St41) | St = 9]

Backup Diagrams for MRP

v(s) = E[Rer1 +yv(Se41) | St = 5]

U(S):SA
v(s") s

v(s) =Rs+7 Y Pesv(s')

s’eS

Student MRP: Bellman Eqg

4.3=-2+0.6*%10 + 0.4%0.8

Matrix Form of Bellman Eg

The Bellman equation can be expressed concisely using matrices,

v=R+vyPv

where v is a column vector with one entry per state

-V(l)- R1 P11 ... Pin —V(l)-

v(n) R P11 ... Pan| |v(n)

Solving the Bellman Equation

m [he Bellman equation is a linear equation

m It can be solved directly:

v=R+~yPv
(Il =yP)v=TR
v=(—-9P)'R

Solving the Bellman Equation

m [he Bellman equation is a linear equation

m |t can be solved directly:

v=R+~yPv
(Il —vP)v=TR
v=>1-P)'R

m Computational complexity is O(n3) for n states

m Direct solution only possible for small MRPs

m [here are many iterative methods for large MRPs, e.g.
m Dynamic programming
m Monte-Carlo evaluation
m Temporal-Difference learning

Machine Learning

Markov Decision Processes

-—

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It i1s an environment in which all states are Markowv.

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It i1s an environment in which all states are Markowv.

A Markov Decision Process is a tuple (S, A, P, R,~)

m S is a finite set of states

m A is a finite set of actions

m P is a state transition probability matrix,
2, =P[Sty1=5 | St =s,A: =

ss’
m R is a reward function, RZ =E [Ri+1 | St = 5, Ar = 4]

m 7 is a discount factor v € [0, 1].

The Student MDP

Facebook
R=-1
-
Quit Facebook
R=0 R=-1

Study
R=+10

Policies

A policy 7 is a distribution over actions given states,

m(als) =P[A;=a| St = 5]

Policies

A policy 7 is a distribution over actions given states,

m(als) =P[A;=a| St = 5]

m A policy fully defines the behaviour of an agent

m MDP policies depend on the current state (not the history)

Policies

A policy 7 is a distribution over actions given states,

m(als) =P[A;=a| St = 5]

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
At ~ 7T(|S1_-),Vt >0

MPs - MRPs - MDPs

m Given an MDP M = (S, A,P,R,~) and a policy 7

MPs - MRPs - MDPs

m Given an MDP M = (S, A,P,R,~) and a policy 7
m The state sequence 51, Sy, ... is a Markov process (S, P™)

m [he state and reward sequence 51, R», S5, ... is a Markov
reward process (S, P™, R™,)

m where

Pry = Z m(als)P2,

acA

RT =) m(als)R2

acA

Value Function

The state-value function v (s) of an MDP is the expected return
starting from state s, and then following policy 7

Ve(s) = Ex [G: | St = s]

Student MDP: Value Function

Facebook vr(s) for z(als)=0.5, y =1
R=-1

Bellman Expected Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(s) = Ex [Ret1 + YV (Se41) | St = 5]

Bellman Expected Equation, V

Vr(8) i s

va(s) =) m(als) (Ri +v) P Vw(S'))

acA s'eS

Student MDP: Bellman Exp Eq.

Facebook 74=05*(1+02*-13+04%2.7+04%*7.4)
R=-1 +0.5*10

Facebook
=-]

Bellman Exp Eq: Matrix Form

The Bellman expectation equation can be expressed concisely
using the induced MRP,

Ve = R" + P vy

with direct solution

Ve = (I —yP™) ' R™

Optimal Value Function

The optimal state-value function v,(s) is the maximum value
function over all policies

vi(s) = max vr(s)

Student MDP: Optimal V

Facebook v(s) fory =1
R=-1

Facebook

Quit
R= R=-1

0

Study
R=+10

Bellman Optimality Eq, V

Vk(s) = max Ri+ Z P2 vi(s)
s'eS

Student MIDP: Bellman Optimality

Facebook 6 =max {-2+8, -1 +6}
R=-1

Facebook

From MDPs to RL

Evaluate Policy, it Find Best Policy, *

MDP Known Policy Evaluation Policy/Value Iteration

MDP Unknown MC and TD Learning Sarsa + Q-Learning

Improving a Policy!

m Given a policy 7
m Evaluate the policy 7

Vﬂ-(S) = E[Rt+1 + ’}’Rt+2 + |5t = 5]

m Improve the policy by acting greedily with respect to v,

' = greedy(vy)

Policy Iteration

evaluation

m

U |4

starting

V 1 — n—>greedy(V)
improvement
®
“' -
®
Policy evaluation Estimate v, .
Iterative policy evaluation .
Policy imprO\./em.ent Generate 7’ > 7 % S
Greedy policy improvement T - V

From MDPs to RL

Evaluate Policy, it Find Best Policy, *

MDP Known Policy Evaluation Policy/Value Iteration

MDP Unknown MC and TD Learning Sarsa + Q-Learning

Monte Carlo RL

m MC methods learn directly from episodes of experience

m MC is model-free: no knowledge of MDP transitions / rewards

Monte Carlo Policy Evaluation

m Goal: learn v, from episodes of experience under policy 7
51,A1,Ry, ..., S ~ 7
m Recall that the return is the total discounted reward:
Gt = Rep1+YRej2 + . + v IRy
m Recall that the value function is the expected return:

Vr(s) = Ex [Gt | St = 5]

m Monte-Carlo policy evaluation uses empirical mean return
instead of expected return

Every-Visit MC Policy Evaluation

To evaluate state s

Every time-step t that state s is visited in an episode,

Increment total return S(s) < S(s) + G;
Value is estimated by mean return V/(s) = S(s)/N(s)
m Again, V(s) = v;(s) as N(s) — oo

O
O
m Increment counter N(s) < N(s) + 1
O
O

Blackjack Example

m States (200 of them):

m Current sum (12-21)
m Dealer’s showing card (ace-10)
m Do | have a "useable” ace? (yes-no)

m Action stand Stop receiving cards (and terminate)
m Action hit : Take another card (no replacement) ¥

m Reward for stand

m +1 if sum of cards > sum of dealer cards
m O if sum of cards = sum of dealer cards
m -1 if sum of cards < sum of dealer cards

m Reward for hit

m -1 if sum of cards > 21 (and terminate)
m 0 otherwise

m Transitions: automatically hit if sum of cards < 12

Blackjack Value Function

After 10,000 episodes

Usable
ace

No
usable
ace

Policy: stand if sum of cards > 20, otherwise hit

Blackjack Value Function

After 10,000 episodes After 500,000 episodes

Usable
ace

No
usable
ace

Policy: stand if sum of cards > 20, otherwise hit

