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Machine	Learning

Markov	Decision	Processes

Markov	Reward	Processes

Markov	Processes

Intro	to	Reinforcement	Learning
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What	makes	it	different?
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No	direct	supervision,	only	rewards
Feedback	is	delayed,	not	instantaneous
Time	really	matters,	i.e.	data	is	sequential
Agent’s	actions	affect	what	data	it	will	receive

• Fly	stunt	maneuvers	in	a	helicopter
• Defeat	the	world	champion	at	Backgammon	or	Go
• Manage	an	investment	portfolio
• Control	a	power	station
• Make	a	humanoid	robot	walk
• Play	many	different	Atari	games	better	than	humans
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Agent-Environment	Interface
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• decides	on	an	action
• receives	next	observation
• receives	next	reward

Agent

• executes	the	action
• computes	next	observation
• computes	next	reward

Environment



Reward,	Rt
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How	well	the	
agent	is	doing

+,	positive	(Good)
-,	negative	(Bad)

Nothing	about	WHY	it	is	
doing	well,	could	have	
little	to	do	with	At-1

Agent	is	trying	to	maximize	its	cumulative	reward



Example	of	Rewards
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• Fly	stunt	maneuvers	in	a	helicopter
• +ve reward	for	following	desired	trajectory
• −ve reward	for	crashing

• Defeat	the	world	champion	at	Backgammon
• +/−ve reward	for	winning/losing	a	game

• Manage	an	investment	portfolio
• +ve reward	for	each	$	in	bank

• Control	a	power	station
• +ve reward	for	producing	power
• −ve reward	for	exceeding	safety	thresholds

• Make	a	humanoid	robot	walk
• +ve reward	for	forward	motion
• −ve reward	for	falling	over

• Play	many	different	Atari	games	better	than	humans
• +/−ve reward	for	increasing/decreasing	score



Sequential	Decision	Making
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Actions	have	long	term	consequences

Rewards may	be	delayed

May	be	better	to	sacrifice short	term	reward	for	long	term	benefit
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• A financial investment (may take months to mature)
• Refueling a helicopter (might prevent a crash later)
• Blocking opponent moves (might eventually help win)
• Spend a lot of money and go to college (earn more later)
• Don’t commit crimes (rewarded by not going to jail)
• Get started on final project early (avoid stress later)

A	key	aspect	of	intelligence:		How	far	ahead	are	you	able	to	plan?



Reinforcement	Learning
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Given	an	environment
(produces	observations	and	rewards)

Reinforcement	
Learning

Automated	agent	that	selects	actions
to	maximize	total	rewards	in	the	environment



Let’s	look	at	the	Agent
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What	does	the	choice	of	action	depend	on?

• Can	you	ignore	Ot completely?
• Is	just	Ot enough?	Or	(Ot,At)?
• Is	it	last	few	observations?
• Is	it	all	observations	so	far?



Agent	State,	St

11

History:	everything	that	happened	so	far

Ht =	O1R1A1O2R2A2O3R3,…,At-1OtRt

State,	St can	be Ot
OtRt
At-1OtRt
Ot-3Ot-2Ot-1Ot

In	general,	St =	f(Ht)
You,	as	AI	designer,
specify	this	function



Agent	Policy,	𝜋

12

Current	state
St

Next	action
At

𝜋

Deterministic	Policy:	 𝐴# = 𝜋 𝑆#
Stochastic	Policy:	 𝜋 𝑎|𝑠 = 𝑃(𝐴# = 𝑎|𝑆# = 𝑠)

Good	policy:	Leads	to	larger	cumulative	reward
Bad	policy:	Leads	to	worse	cumulative	reward
(we	will	explore	this	later)



Example:	Atari
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Rules	are	unknown
• What	makes	the	score	increase?
Dynamics	are	unknown
• How	do	actions	change	pixels?



Video	Time!
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https://www.youtube.com/watch?v=V1eYniJ0Rnk



Example:	Robotic	Soccer
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https://www.youtube.com/watch?v=CIF2SBVY-J0



AlphaGo
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https://www.youtube.com/watch?v=I2WFvGl4y8c



Overview	of	Lecture
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Markov	
Processes

Markov	Reward
Processes

Markov	Decision
Processes

+	Rewards

+	Actions

States
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Markov	Property
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Markov	Property
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Markov	Property
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State	Transition	Matrix
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State	Transition	Matrix
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Markov	Processes
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Markov	Processes
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Student	Markov	Chain
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Student	MC:	Episodes
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Student	MC:	Episodes
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Student	MC:	Transition	Matrix
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Markov	Reward	Process
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Markov	Reward	Process
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The	Student	MRP
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Return
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Return
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Return
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Why	discount?
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Why	discount?
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Why	discount?
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Why	discount?
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Why	discount?
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Value	Function
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Value	Function
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Student	MRP:	Returns
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Student	MRP:	Returns
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Student	MRP:	Value	Function
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Student	MRP:	Value	Function

47



Student	MRP:	Value	Function
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Bellman	Equations	for	MRP
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Backup	Diagrams	for	MRP
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Student	MRP:	Bellman	Eq
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Matrix	Form	of	Bellman	Eq

52



Solving	the	Bellman	Equation
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Solving	the	Bellman	Equation
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Markov	Decision	Process
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Markov	Decision	Process

57



The	Student	MDP
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Policies
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Policies
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Policies
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MPs	→	MRPs	→	MDPs
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MPs	→	MRPs	→	MDPs
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Value	Function
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Student	MDP:	Value	Function
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Bellman	Expected	Equation
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Bellman	Expected	Equation,	V
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Student	MDP:	Bellman	Exp	Eq.
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Bellman	Exp	Eq:	Matrix	Form
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Optimal	Value	Function
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Student	MDP:	Optimal	V
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Bellman	Optimality	Eq,	V
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Student	MDP:	Bellman	Optimality
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From	MDPs	to	RL
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MDP	Known

MDP	Unknown

Evaluate	Policy,	π Find	Best	Policy,	π*

Policy	Evaluation Policy/Value	Iteration

MC	and	TD	Learning Sarsa +	Q-Learning



Improving	a	Policy!
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Policy	Iteration
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From	MDPs	to	RL
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MDP	Known

MDP	Unknown

Evaluate	Policy,	π Find	Best	Policy,	π*

MC	and	TD	Learning

Policy	Evaluation

Sarsa +	Q-Learning

Policy/Value	Iteration



Monte	Carlo	RL
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Monte	Carlo	Policy	Evaluation
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Every-Visit	MC	Policy	Evaluation
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Blackjack	Example
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hit
stand

hit

stand

hit



Blackjack	Value	Function
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hitstand



Blackjack	Value	Function
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hitstand


