Equilibrium States and Phase Portraits

Recall the definition of equilibrium x_e

The state (of a dynamic system) x_e is called the equilibrium state if and only if:

$$x(t) = x_e \quad \forall t \in [t^*, \infty)$$

and under <u>no input</u> conditions.

In other words, once the system reaches the state x_e at time t^* , the system never leaves it (unless input is applied).

Consequence:

$$x(t) = x_e \quad \forall t \in [t^*, \infty)$$

or
 $\dot{x}_e = 0$

For LTI systems: $x_e = 0$ is always an equilibrium point.*

The number of equilibria in LTI systems is dictated by the state space matrix A_{\cdot}^*

1

What about nonlinear systems? $\frac{dx(t)}{dt} = f(x(t), u(t), t)$

Time-invariance: $\frac{dx(t)}{dt} = f(x(t), u(t))$ (no explicit dependence on t)

For equilibria (no inputs): $\frac{dx(t)}{dt} = f(x(t))$

To find x_e , set $\frac{dx(t)}{dt} = 0$ or $f(x_e) = 0$ and solve for x_e .

It is not uncommon for nonlinear systems to have multiple equilibria.

Example 1: Logistic equation (population growth)

$$\frac{dN(t)}{dt} = rN(t) \left[1 - \frac{N(t)}{K} \right]$$

r - growth rateK - carrying capacity

Example 2: Pendulum

$$mL\ddot{\theta}(t) + bL\dot{\theta}(t) + mg\sin(\theta(t)) = F(t)$$

Phase Portrait

Dynamical system:
$$\frac{dx(t)}{dt} = f(x(t), u(t), t)$$

Time-invariant:
$$\frac{dx(t)}{dt} = f(x(t), u(t))$$
 (no explicit dependence on t)

For equilibrium
$$(u(t) = 0)$$
: $\frac{dx(t)}{dt} = f(x(t))$ (*)

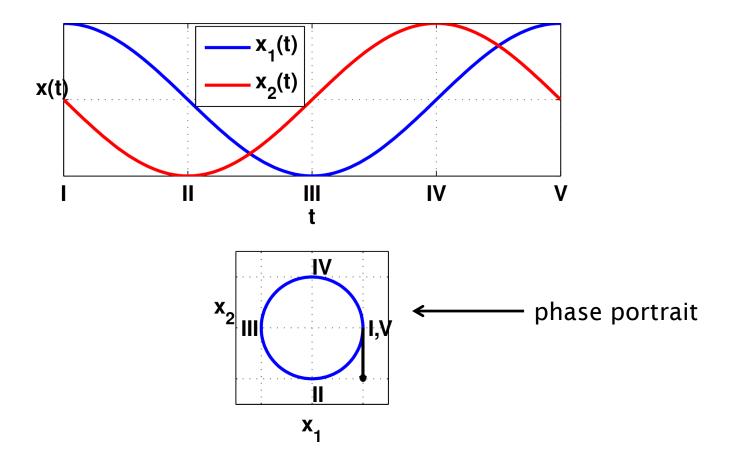
Initial condition:
$$x(0) = x_0$$
.

A function x(t) that solves the differential equation above (*), while satisfying the initial condition is called the solution.

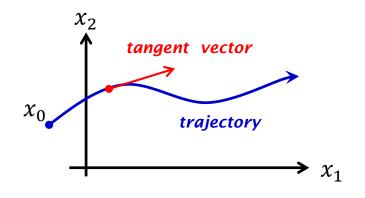
Collection of all solutions to (*) plotted as curves in the state space is called the <u>phase portrait of</u> (*). Phase portraits typically refer to 2-D (second order) systems

Note: Phase portrait is not a plot of x(t) vs. t.

Example 3: Harmonic Oscillator:
$$\dot{x}_1(t) = x_2(t)$$
 $\dot{x}_2(t) = -x_1(t)$ $x(0) = [1, 0];$



Time is lost in the phase portrait, but a lot is gained—geometry. Whether plotted as a function of time, or as a phase portrait, x(t) is called the trajectory of a system.



Note: velocity (at any point) is the tangent vector to trajectory.

$$Velocity = \frac{dx(t)}{dt}$$

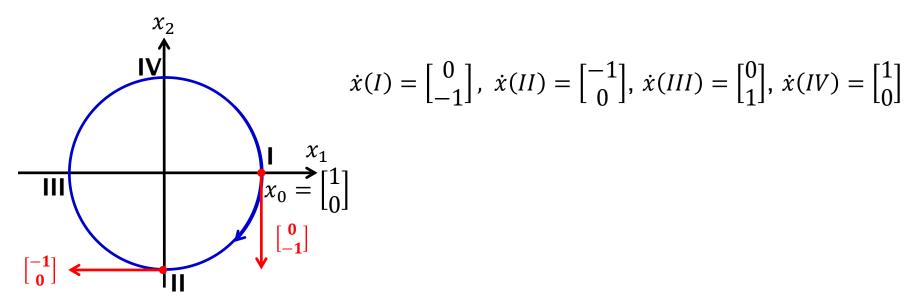
On the other hand:
$$\frac{dx(t)}{dt} = f(x(t))$$
 velocity vector vector field

For any point $(x_1(t), x_2(t))$ on the trajectory, f(x(t)) is a 2-D vector.

In mathematics, this is called a vector field.

Example 4: Harmonic Oscillator
$$\frac{dx(t)}{dt} = \underbrace{Ax(t)}_{\text{vector field}} A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x(t) = \underbrace{\begin{bmatrix} x_2(t) \\ -x_1(t) \end{bmatrix}}_{\text{vector field}}$$



Since f(x(t)) is parameterized by t, such a vector field is often called the flow of the system

What about phase portraits, vector fields and flows of 1-D systems?

$$\frac{dx(t)}{dt} = f(x(t))$$
scalar scalar

Technically, f(x(t)) is not a vector field. Still the same formalism is useful.

Example 5: Logistic Equation*

$$\frac{dN(t)}{dt} = \underbrace{r N(t) \left[1 - \frac{N(t)}{K} \right]}_{f(N(t))}$$

Phase Portraits of 2-D LTI Systems

$$\dot{x}(t) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} x(t) \qquad x(0) = x_0$$

Solution:

$$x(t) = e^{At}x_0$$

$$x(t) = e^{At}x_0$$
 $e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$

x(t) - depends on the eigenvalues of A!

$$\det(sI - A) = 0$$

$$s_{1,2} = \frac{\tau \pm \sqrt{\tau^2 - 4\Delta}}{2}$$

where $\tau = a + d = \operatorname{trace}(A)$ and $\Delta = ad - bc = \det(A)$

Case I Complex-Conjugate Poles $(s_{1,2} \in \mathbb{C}^{1 \times 1})$

- stable focus (spiral)
- unstable focus (spiral)
- center (marginally stable)

Case II Real Poles $(s_{1,2} \in \mathbb{R}^{1 \times 1})$

```
case i 0 > s_1 > s_2 (stable node)
case ii s_1 > s_2 > 0 (unstable node)
case iii s_1 > 0 > s_2 (saddle point)
case iv s_1 > s_2 = 0 (unstable line)
case v 0 = s_1 > s_2 (stable line)
case vi s_1 = s_2 > 0 (2 lin. ind. eigenvec.) (unstable star)
s_1 = s_2 < 0 (stable star)
case vii s_1 = s_2 > 0 (1 lin. ind. eigenvec.) (unstable degenerate node)
s_1 = s_2 < 0 (stable degenerate node)
case viii s_1 = s_2 = 0 (outrageously trivial)
```

Play with equilibrium_points.m

Cases shown in **blue** are called *hyperbolic equilibria*.