Elementary Index Theory

Second order $(n=2)$ nonlinear time-invariant dynamic system:

$$
\frac{d x(t)}{d t}=f(x(t))
$$

$f=\left[f_{1}, f_{2}\right]$-2-D vector field. Assume f is smooth.
C - a simple closed curve in \mathbb{R}^{2} that does not pass through any equilibrium points. C is not necessarily a trajectory.

At each point q on the curve define: $\theta=$ $\theta(q)$-the angle of the slope of the vector field at point q :

$$
\theta(q):=\left.\tan ^{-1} \frac{\dot{x}_{2}}{\dot{x}_{1}}\right|_{x=q}
$$

As q moves CCW around C, the angle θ changes continuously (why?)

After one revolution, q returns to the initial point q_{0} where $\theta=\theta\left(q_{0}\right)$.

If $[\theta]$ is the net change of θ over one CCW revolution, the index of C is defined as:

$$
I_{C}:=\frac{1}{2 \pi}[\theta]
$$

Properties of the Index

1) If C does not encircle an equilibrium point, then $I_{C}=0$.
2) Let $C 1$ and $C 2$ be simple closed curves which do not pass through any equilibria. Suppose that $C 2$ lies entirely in $C 1$ and that there are no equilibria in between. Then $I_{C 1}=I_{C 2}$.

Index of a point

Suppose x^{*} is an isolated equilibrium point. The index of x^{*} is the index of a circle $C:=\left\{x:\left\|x-x^{*}\right\|=\varepsilon\right\}$, where ε is chosen so small that no other equilibria lie in $\left\|x-x^{*}\right\| \leq \varepsilon$.

$$
\left\|x-x^{*}\right\|=\varepsilon \Leftrightarrow \underbrace{\sqrt{\left(x_{1}-x_{1}^{*}\right)^{2}+\left(x_{2}-x_{2}^{*}\right)^{2}}=\varepsilon}_{\text {circle with radius } \varepsilon}
$$

Theorem: The index of a closed curve C is equal to the sum of the indices of isolated equilibria inside of C.

Theorem: The index of a focus, node, star, center and degenerate node is +1 .

Theorem: The index of a saddle point is -1 .
Theorem: The index of any closed trajectory (and a periodic orbit) is +1 .
Example: Show that the system

$$
\begin{gathered}
\frac{d x_{1}}{d t}=x_{1}\left(4-x_{2}-x_{1}^{2}\right) \\
\frac{d x_{2}}{d t}=x_{2}\left(x_{1}-1\right)
\end{gathered}
$$

has no periodic orbit.

Solution:

Equilibrium points:

$$
\begin{aligned}
& x_{1}\left(4-x_{2}-x_{1}^{2}\right)=0 \\
& x_{2}\left(x_{1}-1\right)=0
\end{aligned}
$$

$\left(x_{1}=0\right.$ or $\left.4-x_{2}-x_{1}^{2}=0\right)$ and $\left(x_{2}=0\right.$ or $\left.x_{1}=1\right)$

$$
\begin{gathered}
x^{\star}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], x^{\star}=\left[\begin{array}{l}
2 \\
0
\end{array}\right], x^{\star}=\left[\begin{array}{c}
-2 \\
0
\end{array}\right], x^{\star}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \\
D f(x)=\left[\begin{array}{cc}
4-x_{2}-x_{1}^{2}-2 x_{1}^{2} & -x_{1} \\
x_{2} & x_{1}-1
\end{array}\right]=\left[\begin{array}{cc}
4-x_{2}-3 x_{1}^{2} & -x_{1} \\
x_{2} & x_{1}-1
\end{array}\right]
\end{gathered}
$$

$D f\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=\left[\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right] \Rightarrow \lambda_{1}=-1, \lambda_{2}=4$ (hyperbolic eq., saddle point $I=-1$)
Eigenvectors: $v_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$D f\left(\left[\begin{array}{l}2 \\ 0\end{array}\right]\right)=\left[\begin{array}{cc}-8 & -2 \\ 0 & 1\end{array}\right] \Rightarrow \lambda_{1}=-8, \lambda_{2}=1$ (hyperbolic eq., saddle point $I=-1$)
Eigenvectors: $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ -4.5\end{array}\right]$
$\operatorname{Df}\left(\left[\begin{array}{c}-2 \\ 0\end{array}\right]\right)=\left[\begin{array}{cc}-8 & 2 \\ 0 & -3\end{array}\right] \Rightarrow \lambda_{1}=-8, \lambda_{2}=-3$ (hyperbolic eq., stable node $I=+1$)
Eigenvectors: $v_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ 2.5\end{array}\right]$
Df $\left(\left[\begin{array}{l}1 \\ 3\end{array}\right]\right)=\left[\begin{array}{cc}-2 & -1 \\ 3 & 0\end{array}\right] \Rightarrow \lambda_{1,2}=-1 \pm j \sqrt{2}$, (hyperbolic eq., stable focus $I=+1$)

Check calculations with rule_out_closed_orbit.m Check phase portrait with no_orbit_pp.m

