Gradient (Potential) Systems

O = f(x(D) xeR

If there exists a continuously differentiable function V:R" -» R, such
that f(x) = —VV(x),then the system above is called a gradient system

with the potential V.

Note: V(x) is a real-valued scalar function.

What does f(x) = —VV(x) mean?
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Hence, f;(x(t)) = —%}f:)),w =12,,n



Note: continuous differentiability is indeed necessary. It means that aV/dx;
are continuous functions, which implies that f.(x) = —dV/dx; are
continuous, which in turn guarantees the existence of the solution

x(t; to, x(to))-

If the potential V(x) is known, it is trivial to find the corresponding
gradient system.

x(t) = -VV(x)



Example: Find a gradient system whose potential is V(x):

V(x) = x2+ x2

potential

o _,
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v _,

axz - %2
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X1 = axl = X1
v

Xy = axz = X9

X '2 _h'z X

Conclusion: x(t) = [_02 _Ozlx(t). Note that we obtained a linear system
since V(x) was a 2"d order polynomial. 3




Example: Find a gradient system whose potential is V(x):

V(x) =x2—x2

potential
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0x, *2
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X2 = ax, X2
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Conclusion: x(t) = [_02 g]x(t). Again, we obtained a linear system since

we picked a very simple V(x) (2"d order polynomial). In general, this does
not have to be the case.



Example: Consider a general nonlinear time-invariant (NLTI ) system:

X = f1(x1,%7)
Xy = fo(x1,x3)

Note, it is time-invariant since f; and f, do not explicitly depend on t.

If this is a gradient system, then: Z% = Z%
2 1
To see this, note that:
ov. 9fy 0 1% 9%V
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As long as second partial derivatives are continuous, we have that:
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(symmetry of 2nd derivatives)



How to find V if we suspect our system is a gradient system? Example:

X1 = x5 + x5 cos(xy) = fi(x1, %)
Xy = 2x1%5 + sin(xy) = f(xq,x3)

: )%
Since: f; = ~ a0 We have:

V(xy,x2) = —J fi(xy, X2 Ydx; = —[ (x5 + x5 cos(xq))dx;

const
= —xzle — X Sin(xl) + ¢(x2)

. v . :
Similarly: f, = - implies:
2

V(xy,x3) = —[ fi( X1 ,x2)dx; = —[ (2x1x, + sin(x;))dx;

const
2

X2 : :
= —2x4 o %2 sin(xy) + Y(x1) = — x1x5 — x5 sin(xq) + P (xq)
Since we want: —x2x; — x, sin(x;) + ¢(x,) = —xyx5 — x, sin(x;) + P(x,) for all x,
and x,, we must have ¢(x,) = ¥(x;) = Const. Therefore any function of the
form: V(x,,x,) = —xyx% — x, sin(x,) + Const. is the potential of the above
system.



Theorem: Gradient systems cannot have closed orbits (including limit
cycles). In other words they cannot oscillate.

Proof by contradiction. Suppose there is a closed orbit. Starting from ¢,
after a period T, the system would come back to the same state,
incurring a zero net change of the potential V:
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The above is true iff: ||x(t)|| = 0, which impliesthat x =0 , which
equilibrium

contradicts the initial premise that the system evolves along a closed orbit.



The intuition is clear here:
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V(x) = const. contours
C1 > Cy > (3

Note, since FV(x) is a gradient of V, it is
perpendicular to the contour (or more
precisely the tangent to the contour).

If this is a gradient system, then dx/dt is
perpendicular to the contour since

oy

The solutions evolve along trajectories which
are perpendicular to the contours
V(x) = const.

If trajectories are perpendicular to the
contours, then no trajectory can be closed
(the system evolves by following the

gradient). :



Theorem [Lyapunov 1892]: Let x* be an equilibrium point of an n-th

order system dx(t)/dt = f(x(t)) . If there exists a continuously
differentiable function V:R" - R such that:

1) V(x) > 0 forallx # x*and V(x*) = 0.
2) dV(x)/dt < 0 forallx # x*

Then x* is Lyapunov stable.

If 2) dV(x)/dt < 0 for all x # x*, then x* is globally asymptotically stable
(Lyapunov stable + globally attractive). Such a function V is called the
Lyapunov function.

If the Lyapunov function exists, the system cannot have a closed (or
periodic) orbit.

The trajectories move monotonically
Viz) downhill (toward x*), because dV/dt <0

Tn T~ Generalized energy function that’s always

T dissipated, except at x = x*
CC1>/ x* 9



Example: show that the system:

561 = .X'Z — x1
Xy = —X1 — xé?'
has no closed orbits.
Hint: V(x) = ax? + bx2
Find equilibria:
3.C1 = O = xz = xf
Xy =0x;=—x32x3=—x)=2>x,+x,=0=|x, =0|[x; =0
x =)
0

Check the conditions of the Lyapunov Theorem:
1) V(x) >0,Vx + lg] (aslongasa >0and b > 0),and V(x*) =0

Xy — X7 ]

a3
X1 — X2

= 2ax;x, — 2ax{ — 2bxyx, — 2bxy (a = b)

= —2a(x{ +x3) <0 aslongasx # x*
>0

2) d[;(tx) = a‘gix) x(t) = [2ax; 2bx,]

Conclusion: V(x) = a(x? + x2) is a Lyapunov function, therefore the system
cannot have closed orbits. 10



Example: show that the system:

561 - —x1 + 4‘x2
562 = —x1 — xg,
has no closed orbits.
Hint: V(x) = x2 + bx5
Find equilibria:
3.C1 = 0 = xl = 4x2
5C2=0=>x1=—x§=>x§+4x2=0=> x2=O,X1=O
« [0
X = lo]

Check the conditions of the Lyapunov Theorem:
1) V(x)>0,Vx + lg] (aslongasb > 0),and V(x*) =0
—X1 + 4x2]

2) W) _ VW) p 1y = [2x, 2bxy]

dt ox 3

X1 T X2
= —2x% + 8xyx, — 2bxyx, — 2bx5 (b = 4)
= —2 (x{ +4x3) <0 aslongasx # x*

>0

Conclusion: V(x) = x2 + 4x# is a Lyapunov function, therefore the system
cannot have close orbits. 11



Conservative Systems

dx(t)/dt = f(x(t))  xeR"

If there exists a continuous function E:R" - R, that is:
(i) non-constant on every open set and
(ii) constant along every trajectory, i.e. dE(x)/dt = 0

then the system above is called a conservative system, and the quantity
E(x) represents a conserved quantity.

Conservative systems have no attracting equilibria. For conservative
systems, the linearized center is also a nonlinear center (despite being non-
hyperbolic).

Example: pendulum with no friction:

mLO +mgsind =0
—— N ,
inertia gravity

State variables:

X1=0>=>x =x,

. . g .
X, =0 > x, = —Zsmxl



The conserved quantity candidate—energy function:

1
E=Ek+Ep=Emv2+mgh

1 :
E = Em(L9)2+mg(L — Lcos )

1 .
E ELZ(H)Z + gL(1 — cos9)

L cosf —

L
E oczxg + g(1 — cosx;)

dE(x) OE | X2
ETEEE x(t) = [gsinxy Lx;] —%sin »
dE (x) . .
I | gx,sinx; — gx, sinxg; = |0

Since E(x) = Const., this system cannot have attracting equilibria.
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