CS-171, Intro to	A.I. — Quiz#3 — Winter Qua	arter, 2018 — 2	5 minutes		
YOUR NAME AND I	EMAIL ADDRESS:				
YOUR ID:	ID TO RIGHT:	ROW:	SEAT:		
	each) RESOLUTION. Apply resolution nswer in Conjunctive Normal Form (CN		U 1		
1.a. (5 pts) (P Q ¬R S	$) (P \neg Q W X). \underline{\qquad \qquad (P \neg R S W X)}$	See Section 7.5.2 a	nd Figure 7.13		
1.b. (5 pts) (P Q ¬R S) (¬P). <u>(Q ¬R S)</u>				
1.c. (5 pts) (¬R) (R)	() "FALSE" is OK	clauses does			
	$(P R \neg S W X). \qquad (P Q \neg R R W X)$ $S) (P \neg Q R \neg S) \qquad None$	"TRUE" is	OK		
1.f. (5 pts) (P ¬Q ¬S V	$V(PR \neg SX)$ None				
is the empty set of sen "derives." S = Sound. C = Complete. Sat = Satisfiable. V = Valid. For each blank below,	total) LOGIC TERMINOLOGY. In eatences, and S is a single sentence. Recall U = Unsound. I = Incomplete. Unsat = Unsatisfiable. N = None of the above. write in the key above that corresponds	to the best term.		s, {}	
C	advance. Suppose that $\{\} = S$. Then S is advance. Suppose that for some KB1, K Sat		some other KB2, KB2	= ¬S.	
	ny KB and any S, whenever KB \mid = S the ocedure is	en KB - S.			
	some KB and some S, KB - S but not KB ocedure is	3 = S.			
	ome KB and some S, KB = S but not KB ocedure isI	B - S.			
	ny KB and any S, whenever KB - S therefore dure is	n KB = S.			

**** TURN PAGE OVER. QUIZ CONTINUES ON THE REVERSE. ****

3. (40 pts total) ONE FISH, TWO FISH, RED FISH, BLUE FISH. (With apologies to Dr. Seuss.) Amy, Betty, Cindy, and Diane went out to lunch at a seafood restaurant. Each ordered one fish. Each fish was either a red fish or a blue fish. Among them they had exactly three red fish and one blue fish. You translate this fact into Propositional Logic (in prefix form) as: /* Ontology: Symbol A/B/C/D means that Amy/Betty/Cindy/Diane had a red fish. */								
(or (and A B C (¬ D (and A (¬ B) C □		A B (¬ C) D) (¬ A) B C D))		See R&N Section 7	.5.2.			
Their waiter reported: "Amy and Cindy had the same color fish; I don't remember which color it was. Cindy and Diane had the same color fish; I don't remember which color it was." You translate these facts into Propositional Logic (in prefix form) as: (<=> A C) (<=> C D)								
Betty's daughter asked, "Is it true that my mother had a blue fish?" You translate this query into Propositional Logic as "(¬ B)" and form the negated goal as "(B)".								
Your resulting knowledg (A B) (A C)	ge base (KB) plus t (A D)			clausal form) is: (C D)	"Three red fish."			
((¬ A) (¬ B) (¬ C) (¬ D)) < ((12)	(0 (0)		"One blue fish."				
((¬ A) (¬ B) (¬ C) (¬ D) ((¬ A) C) (A (¬ C) (B)) ((¬C)D)	(C (¬ D))←						
Write a resolution pro	Negated goal.	a blua fiab		A <=> C <=> D.				
For each step of the proof, fill in the first two blanks with CNF sentences from KB that will resolve to produce the CNF result that you write in the third (resolvent) blank. The resolvent is the result of resolving the first two sentences. Add the resolvent to KB, and repeat. Use as many steps as necessary, ending with the empty clause. The empty clause indicates a contradiction, and therefore that KB entails the original goal sentence. The shortest proof I know of is only five lines long. (A Bonus Point is offered for a shorter proof.) Longer proofs are OK provided they are correct. Obviously, it must be that Amy, Cindy, and Diane had the three red fish, so Betty must have had a blue fish. Think about it, then find a proof that mirrors how you think.								
Resolve ((¬A)(¬B)(¬C	C) (¬ D)) with	((¬ C) D)		to produce: ((¬)	A) (¬ B) (¬ C))			
Resolve ((¬A)(¬B)(¬C	C)) with	((¬ A) C)		to produce:((¬/	A) (¬ B))			
Resolve((¬ A) (¬ B))		(B)		to produce:(¬ A)			
Resolve (A C)		(A (¬ C))		to produce: (A)				
Resolve (¬ A)	with	(A)		to produce: ()				
Other proofs are OK, provided they are correct.	where the numbe	r of literals will do	ecrease (e	umber of literals. Loc eventually, you need ery line in the proof a	to decrease the			
Resolve			_	est clause that produc				
cases where the two input clauses share other literals, which will be simplified. Resolve For example, on line #1 the literal (¬ C) is shared in both input clauses, so the net								
result is simply to cancel the (¬ D) in the first clause. Look for cases where one								
Resolve clause is a singleton, which <u>always</u> reduces the number of literals that result in								
the resolvent. For example, in line #3 the singleton clause (B) simply cancels the (¬B) in the first clause. Look for opportunities to produce new singleton clauses,								
Resolve		•		er of literals in other				
For example, the singleton (¬ A) produced in line #3 is used later in line #5 to reduce the number of literals to zero, thereby achieving the goal ().								

Other proofs are OK provided that they are correct. For example, another correct proof is:							
Resolve (A	. C)	_with	(A (¬ C))	_ to produce:(/	These three true sentences state		
Resolve (A	(C)	_ with _	((¬ A) C)	_ to produce:((
Resolve (C	; D)	_with _	((¬ C) D)	_ to produce:([
Resolve((¬ A) (¬ B) (¬ C) (¬ D))	_with _	(A)	_ to produce:((¬ B) (¬ C) (¬ D))		
Resolve ((¬ B) (¬ C) (¬ D))	_with _	(B)	_ to produce:((¬ C) (¬ D))		
Resolve ((¬ C) (¬ D))	_with _	(C)	_ to produce:(-	¬ D)		
Resolve(¬	D)	_ with _	(D)	_ to produce:()		
Resolve		_with _		_ to produce:	The contradiction		
Note that in every line in the proof above, the resolvent has fewer literals than in the longest clause that produced it.					arises because B cannot be true in any world in which A, C, and D are true.		