
CS-171 Final Review 
• Propositional Logic 

• (7.1-7.5) 
• First-Order Logic, Knowledge Representation 

• (8.1-8.5, 9.1-9.2) 
• Probability & Bayesian Networks 

• (13, 14.1-14.5) 
• Machine Learning 

• (18.1-18.4) 
• Questions on any topic 
• Pre-mid-term material if time and class interest 
• Please review your quizzes, mid-term, & old tests 

• At least one question from a prior quiz or old CS-171 test will 
appear on the Final Exam (and all other tests) 



Review Propositional Logic 
Chapter 7.1-7.5 

• Definitions: 
– Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives, 

Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology) 

• Syntactic Transformations: 
– E.g., (A ⇒ B) ⇔ (¬A ∨ B) 

• Semantic Transformations: 
– E.g., (KB |= α) ≡ (|= (KB ⇒ α) 

• Truth Tables: 
– Negation, Conjunction, Disjunction, Implication, Equivalence 

(Biconditional) 

• Inference: 
– By Model Enumeration (truth tables) 
– By Resolution 



Recap propositional logic: Syntax 

• Propositional logic is the simplest logic –  illustrates basic 
ideas 
 

• The proposition symbols P1, P2 etc are sentences 
 

– If S is a sentence, ¬S is a sentence (negation) 
– If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction) 
– If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction) 
– If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication) 
– If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional) 



Recap propositional logic: 
Semantics 

Each model/world specifies true or false for each proposition symbol 
E.g.,  P1,2  P2,2  P3,1 
    false true false 
With these symbols, 8 possible models can be enumerated automatically. 

 
Rules for evaluating truth with respect to a model m: 
  ¬S is true iff  S is false   
  S1 ∧ S2   is true iff  S1 is true and  S2 is true 
  S1 ∨ S2   is true iff  S1is true or  S2 is true 
  S1 ⇒ S2  is true iff S1 is false or S2 is true 
   (i.e.,  is false iff S1 is true and S2 is false) 
  S1 ⇔ S2 is true iff S1⇒S2 is true and S2⇒S1 is true 
 
Simple recursive process evaluates an arbitrary sentence, e.g., 

¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (true ∨ false) =  true ∧ true = true 



Recap propositional logic: 
Truth tables for connectives 

OR: P or Q is true or both are true. 
XOR: P or Q is true but not both. 

Implication is always true 
when the premises are False! 



Recap propositional logic: 
Logical equivalence and rewrite rules 

• To manipulate logical sentences we need some rewrite rules. 
• Two sentences are logically equivalent iff they are true in same 

models: α ≡ ß iff α╞ β and β╞ α 

You need to  
know these ! 



Recap propositional logic: 
Entailment 

• Entailment means that one thing follows from 
another: 

KB ╞ α 
 

• Knowledge base KB entails sentence α if and only if α 
is true in all worlds where KB is true 

 
– E.g., the KB containing “the Giants won and the Reds won” 

entails “The Giants won”. 
– E.g., x+y = 4 entails  4 = x+y 
– E.g., “Mary is Sue’s sister and Amy is Sue’s daughter” 

entails “Mary is Amy’s aunt.” 
 



Review: Models (and in FOL, 
Interpretations) 

• Models are formal worlds in which truth can be evaluated 
 

• We say m is a model of a sentence α if α is true in m 
 

• M(α) is the set of all models of α 
 

• Then KB ╞ α iff M(KB) ⊆ M(α) 
– E.g. KB, = “Mary is Sue’s sister 
 and Amy is Sue’s daughter.” 
– α = “Mary is Amy’s aunt.” 

 
• Think of KB and α as constraints, 

 and of models m as possible states. 
• M(KB) are the solutions to KB 
   and M(α) the solutions to α. 
• Then, KB ╞ α, i.e., ╞ (KB ⇒ a) , 
      when all solutions to KB are also solutions to α.  



Review:  Wumpus models 

• KB = all possible wumpus-worlds consistent 
with the observations and the “physics” of the 
Wumpus world. 



Review:  Wumpus models 

α1 = "[1,2] is safe", KB ╞ α1, proved by model checking. 
 
Every model that makes KB true also makes α1 true. 

 



Wumpus models 

α2 = "[2,2] is safe", KB ╞ α2 



Review: Schematic for Follows, Entails, and Derives 

If KB is true in the real world, 
then any sentence α entailed by KB 
and any sentence α derived from KB 
       by a sound inference procedure 
is also true in the  real world.  

Sentences Sentence 
Derives 

Inference 



Schematic Example:  Follows, Entails, and Derives 

Inference 

“Mary is Sue’s sister and 
Amy is Sue’s daughter.” “Mary is 

Amy’s aunt.” Representation 

Derives 

Entails 

Follows 
World 

Mary Sue 

Amy 

“Mary is Sue’s sister and 
Amy is Sue’s daughter.” 

“An aunt is a sister 
of a parent.” 

“An aunt is a sister 
of a parent.” 

Sister 

Daughter 

Mary 

Amy 

Aunt 

“Mary is 
Amy’s aunt.” 

Is it provable? 

Is it true? 

Is it the case? 



Recap propositional logic: Validity and satisfiability 

A sentence is valid if it is true in all models, 
e.g., True, A ∨¬A,  A ⇒ A,  (A ∧ (A ⇒ B)) ⇒ B 

 

Validity is connected to inference via the Deduction Theorem: 
KB ╞ α if and only if (KB ⇒ α) is valid 

 
A sentence is satisfiable if it is true in some model 

e.g., A∨ B,  C 
 

A sentence is unsatisfiable if it is false in all models 
e.g., A∧¬A 

 

Satisfiability is connected to inference via the following: 
 

KB ╞ A if and only if (KB ∧¬A) is unsatisfiable 
(there is no model for which KB is true and A is false)  



Inference Procedures 
• KB ├ i  A means that sentence A can be derived from KB by procedure i 

 
• Soundness: i is sound if whenever KB ├i α, it is also true that KB╞ α 

– (no wrong inferences, but maybe not all inferences) 
 

• Completeness: i is complete if whenever KB╞ α, it is also true that KB ├i α 
– (all inferences can be made, but maybe some wrong extra ones as 

well) 
 

• Entailment can be used for inference (Model checking) 
– enumerate all possible models and check whether α  is true. 
– For n symbols, time complexity is O(2n)... 
 

• Inference can be done directly on the sentences 
– Forward chaining, backward chaining, resolution (see FOPC, later) 

 
 



Resolution = Efficient Implication 

(OR    A  B  C  D) 
(OR  ¬A  E  F  G) 
----------------------------- 
(OR  B  C  D  E  F  G) 

(NOT (OR  B  C  D))  =>  A 
A  =>  (OR  E  F  G) 
---------------------------------------------------- 
(NOT (OR  B  C  D))  => (OR  E  F  G) 
---------------------------------------------------- 
(OR  B  C  D  E  F  G) 

->Same -> 
->Same -> 

Recall that (A => B) = ( (NOT A) OR B) 
and so: 
             (Y OR X) = ( (NOT X) => Y) 
 ( (NOT Y) OR Z) = (Y => Z) 
which yields: 
 ( (Y OR X) AND ( (NOT Y) OR Z) ) = ( (NOT X) => Z) = (X OR Z)   

Recall: All clauses in KB are conjoined by an implicit AND (= CNF representation). 



Resolution Examples 
 

• Resolution: inference rule for CNF: sound and complete! * 
( )
( )

( )

A B C
A

B C

∨ ∨

¬
− − − − − − − − − − − −

∴ ∨

“If A or B or C is true, but not A, then B or C must be true.” 

( )
( )

( )

A B C
A D E

B C D E

∨ ∨

¬ ∨ ∨
− − − − − − − − − − −

∴ ∨ ∨ ∨

“If A is false then B or C must be true, or if A is true 
then D or E must be true, hence since A is either true or  
false, B or C or D or E must be true.”  

( )
( )

( )

A B
A B

B B B

∨

¬ ∨
− − − − − − − −

∴ ∨ ≡ Simplification 
is done always. 

* Resolution is “refutation complete” 
in that it can prove the truth of any 
entailed sentence by refutation. 

“If A or B is true, and 
not A or B is true, 
then B must be true.”  



Only Resolve ONE Literal Pair! 
If more than one pair, result always = TRUE. 

Useless!! Always simplifies to TRUE!! 
No! 
(OR    A    B    C    D) 
(OR  ¬A  ¬B    F    G) 
----------------------------- 
(OR  C  D  F  G) 
No! This is wrong! 

Yes! (but = TRUE) 
(OR    A    B    C    D) 
(OR  ¬A  ¬B    F    G) 
----------------------------- 
(OR   B ¬B C  D  F  G) 
Yes! (but = TRUE) 

No! 
(OR    A    B    C    D) 
(OR  ¬A  ¬B  ¬C  ) 
----------------------------- 
(OR  D) 
No! This is wrong! 

Yes! (but = TRUE) 
(OR    A    B    C    D) 
(OR  ¬A  ¬B  ¬C   ) 
----------------------------- 
(OR   A ¬A B ¬B  D) 
Yes! (but = TRUE) 



•  The resolution algorithm tries to prove: 
 
 

•  Generate all new sentences from KB and the (negated) query. 
•  One of two things can happen: 

 
1. We find                         which is unsatisfiable. I.e. we can entail the query. 

 
2. We find no contradiction: there is a model that satisfies the sentence 
                        (non-trivial) and hence we cannot entail the query. 

Resolution Algorithm 

|KB equivalent to
KB unsatisfiable

α
α

=

∧ ¬

P P∧ ¬

KB α∧ ¬



Resolution example 

• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1  

• α = ¬P1,2 
KB α∧ ¬

False in 
all worlds 

True! 

¬P2,1 



Detailed Resolution Proof Example 

• In words: If the unicorn is mythical, then it is immortal, but if it is not 
mythical, then it is a mortal mammal. If the unicorn is either immortal or a 
mammal, then it is horned. The unicorn is magical if it is horned. 
 Prove that the unicorn is both magical and horned. 
( (NOT Y) (NOT R) ) (M Y)  (R Y)  (H (NOT M) ) 
(H R)   ( (NOT H) G) ( (NOT G) (NOT H) ) 
 

• Fourth, produce a resolution proof ending in ( ): 
• Resolve (¬H ¬G) and (¬H G) to give (¬H) 
• Resolve (¬Y ¬R) and (Y M) to give (¬R M) 
• Resolve (¬R M) and (R H) to give (M H) 
• Resolve (M H) and (¬M H) to give (H) 
• Resolve (¬H) and (H) to give ( ) 

 
• Of course, there are many other proofs, which are OK iff correct. 



Propositional Logic --- Summary 
• Logical agents apply inference to a knowledge base to derive new 

information and make decisions 
 

• Basic concepts of logic: 
– syntax: formal structure of sentences 
– semantics: truth of sentences wrt models 
– entailment: necessary truth of one sentence given another 
– inference: deriving sentences from other sentences 
– soundness: derivations produce only entailed sentences 
– completeness: derivations can produce all entailed sentences 
– valid: sentence is true in every model (a tautology) 

 
• Logical equivalences allow syntactic manipulations 
 
• Propositional logic lacks expressive power 

– Can only state specific facts about the world. 
– Cannot express general rules about the world 
    (use First Order Predicate Logic instead) 
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Knowledge Representation using First-Order Logic 

• Propositional Logic is Useful --- but has Limited Expressive Power 
 

• First Order Predicate Calculus (FOPC), or First Order Logic (FOL). 
– FOPC has greatly expanded expressive power, though still limited. 

 
• New Ontology 

– The world consists of OBJECTS (for propositional logic, the world was facts). 
– OBJECTS have PROPERTIES and engage in RELATIONS and FUNCTIONS. 

 
• New Syntax 

– Constants, Predicates, Functions, Properties, Quantifiers. 
 

• New Semantics 
– Meaning of new syntax. 

 
• Knowledge engineering in FOL 
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Review: Syntax of FOL: Basic elements 

• Constants KingJohn, 2, UCI,...  
 

• Predicates Brother, >,... 
 

• Functions Sqrt, LeftLegOf,... 
 

• Variables  x, y, a, b,... 
 

• Connectives ¬, ⇒, ∧, ∨, ⇔ 
 

• Equality  =  
 

• Quantifiers   ∀, ∃   
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Syntax of FOL: Basic syntax elements are symbols 

• Constant Symbols: 
– Stand for objects in the world. 

• E.g., KingJohn, 2, UCI, ...  
 
• Predicate Symbols 

– Stand for relations (maps a tuple of objects to a truth-value) 
• E.g., Brother(Richard, John), greater_than(3,2), ... 

– P(x, y) is usually read as “x is P of y.” 
• E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.” 

 
• Function Symbols 

– Stand for functions (maps a tuple of objects to an object) 
• E.g., Sqrt(3), LeftLegOf(John), ... 

 
• Model (world) = set of domain objects, relations, functions 
• Interpretation maps symbols onto the model (world) 

– Very many interpretations are possible for each KB and world! 
– Job of the KB is to rule out models inconsistent with our knowledge. 
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Syntax of FOL: Terms 

• Term = logical expression that refers to an object 
 

• There are two kinds of terms: 
 
– Constant Symbols stand for (or name) objects: 

• E.g., KingJohn, 2, UCI, Wumpus, ...  
 

– Function Symbols map tuples of objects to an object: 
• E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x) 
• This is nothing but a complicated kind of name 

– No “subroutine” call, no “return value” 
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Syntax of FOL: Atomic Sentences 

• Atomic Sentences state facts (logical truth values). 
– An atomic sentence is a Predicate symbol, optionally 

followed by a parenthesized list of any argument terms 
– E.g., Married( Father(Richard), Mother(John) ) 
– An atomic sentence asserts that some relationship (some 

predicate) holds among the objects that are its arguments. 
 

• An Atomic Sentence is true in a given model if the 
relation referred to by the predicate symbol holds among 
the objects (terms) referred to by the arguments. 
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Syntax of FOL: Connectives & Complex Sentences 

• Complex Sentences are formed in the same way, 
and are formed using the same logical connectives, 
as we already know from propositional logic 

 
• The Logical Connectives: 

– ⇔   biconditional 
– ⇒   implication 
– ∧   and 
– ∨   or 
– ¬   negation 

 
• Semantics for these logical connectives are the same as 

we already know from propositional logic. 



30 

Syntax of FOL: Variables 

• Variables range over objects in the world. 
 

• A variable is like a term because it represents an object. 
 

• A variable may be used wherever a term may be used. 
– Variables may be arguments to functions and predicates. 

 
• A term with NO variables is called a ground term. 

 
• All variables must be bound by a quantifier, ∀ or ∃ 

 
• (A variable not bound by a quantifier is called free.) 

– Used by mathematicians, not used in this class 
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Syntax of FOL: Logical Quantifiers 

• There are two Logical Quantifiers: 
– Universal: ∀ x P(x)   means “For all x, P(x).” 

• The “upside-down A” reminds you of “ALL.” 
– Existential: ∃ x P(x)   means “There exists x such that, P(x).” 

• The “upside-down E” reminds you of “EXISTS.” 
 

• Syntactic “sugar” --- we really only need one quantifier. 
– ∀ x P(x) ≡ ¬∃ x ¬P(x) 
– ∃ x P(x) ≡ ¬∀ x ¬P(x) 
– You can ALWAYS convert one quantifier to the other. 

 
• RULES: ∀ ≡ ¬∃¬  and  ∃ ≡ ¬∀¬ 

 
• RULE: To move negation “in” across a quantifier, 

change the quantifier to “the other quantifier” 
and negate the predicate on “the other side.” 

– ¬∀ x P(x) ≡ ∃ x ¬P(x) 
– ¬∃ x P(x) ≡ ∀ x ¬P(x) 

 
 
 



Universal Quantification ∀ 

• ∀  means “for all” 
 

• Allows us to make statements about all objects that have certain 
properties 
 

• Can now state general rules: 
 

∀ x  King(x) => Person(x)   “All kings are persons.” 
 
∀ x  Person(x) => HasHead(x)   “Every person has a head.” 
                 
∀ i  Integer(i) => Integer(plus(i,1))   “If i is an integer then i+1 is an integer.” 

 
 

Note that  
∀ x  King(x) ∧ Person(x)   is not correct!   
This would imply that all objects x are Kings and are People 
 
∀ x  King(x) => Person(x) is the correct way to say this 

 
Note that => is the natural connective to use with ∀ . 
 
 
 

 
    



Existential Quantification ∃ 

• ∃ x means “there exists an x such that….”  (at least one object x) 
 

• Allows us to make statements about some object without naming it 
 

• Examples: 
 

∃ x   King(x)   “Some object is a king.” 
 
∃ x   Lives_in(John, Castle(x))   “John lives in somebody’s castle.” 
 
∃ i    Integer(i) ∧  GreaterThan(i,0)   “Some integer is greater than zero.” 
                 
 

 
Note that ∧ is the natural connective to use with ∃ 
 
(And remember that => is the natural connective to use with ∀ ) 
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Combining Quantifiers --- Order (Scope) 

The order of “unlike” quantifiers is important. 
∀ x ∃ y  Loves(x,y)     

– For everyone (“all x”) there is someone (“exists y”) whom they love 
 

∃ y ∀ x  Loves(x,y) 
        -  there is someone (“exists y”) whom everyone loves (“all x”) 
 

Clearer with parentheses:  ∃ y ( ∀ x    Loves(x,y) ) 
 
The order of “like” quantifiers does not matter. 
  ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y) 
  ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y) 
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De Morgan’s Law for Quantifiers 

( )
( )
( )
( )

x P x P
x P x P

x P x P
x P x P

∀ ≡¬∃ ¬

∃ ≡¬∀ ¬

¬∀ ≡∃ ¬

¬∃ ≡∀ ¬

( )
( )

( )
( )

P Q P Q
P Q P Q

P Q P Q
P Q P Q

∧ ≡ ¬ ¬ ∨ ¬

∨ ≡ ¬ ¬ ∧ ¬

¬ ∧ ≡ ¬ ∨ ¬

¬ ∨ ≡ ¬ ∧ ¬

De Morgan’s Rule Generalized De Morgan’s Rule 

Rule is simple: if you bring a negation inside a disjunction or a conjunction, 
always switch between them (or and, and  or). 
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More fun with sentences 

•  “All persons are mortal.”  
•    [Use: Person(x), Mortal (x) ] 

 
•  ∀x Person(x) ⇒ Mortal(x) 
•  ∀x ¬Person(x) ˅ Mortal(x) 

 
• Common Mistakes: 
•  ∀x Person(x) ∧ Mortal(x) 

 
• Note that => is the natural connective to use with ∀ . 
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More fun with sentences 

• “Fifi has a sister who is a cat.” 
•    [Use: Sister(Fifi, x), Cat(x) ] 
•   
•  ∃x Sister(Fifi, x) ∧ Cat(x)  

 
• Common Mistakes: 
•  ∃x Sister(Fifi, x) ⇒ Cat(x) 

 
•  Note that ∧ is the natural connective to use with ∃ 
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More fun with sentences 

• “For every food, there is a person who eats that food.” 
• [Use: Food(x), Person(y), Eats(y, x) ] 

 
• All are correct: 
•  ∀x ∃y Food(x) ⇒ [ Person(y) ∧ Eats(y, x) ]  
•  ∀x Food(x) ⇒ ∃y [ Person(y) ∧ Eats(y, x) ]  
•  ∀x ∃y ¬Food(x) ˅ [ Person(y) ∧ Eats(y, x) ]  
•  ∀x ∃y [ ¬Food(x) ˅  Person(y) ] ∧ [¬ Food(x) ˅  Eats(y, x) ]  
•  ∀x ∃y [ Food(x) ⇒ Person(y) ] ∧ [ Food(x) ⇒ Eats(y, x) ] 

 
• Common Mistakes: 
•  ∀x ∃y [ Food(x) ∧ Person(y) ] ⇒ Eats(y, x)  
•  ∀x ∃y Food(x) ∧ Person(y) ∧ Eats(y, x)  
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More fun with sentences 

• “Every person eats every food.” 
•   [Use: Person (x), Food (y), Eats(x, y) ] 
•   
•  ∀x ∀y [ Person(x) ∧ Food(y) ] ⇒ Eats(x, y)  
•  ∀x ∀y ¬Person(x) ˅ ¬Food(y) ˅ Eats(x, y)   
•  ∀x ∀y Person(x) ⇒ [ Food(y) ⇒ Eats(x, y) ]   
•  ∀x ∀y Person(x) ⇒ [ ¬Food(y) ˅ Eats(x, y) ]  
•  ∀x ∀y ¬Person(x) ˅ [ Food(y) ⇒ Eats(x, y) ] 
• Common Mistakes: 
•  ∀x ∀y Person(x) ⇒ [Food(y) ∧ Eats(x, y) ] 
•  ∀x ∀y Person(x) ∧ Food(y) ∧ Eats(x, y)  
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More fun with sentences 

•  “All greedy kings are evil.” 
•    [Use: King(x), Greedy(x), Evil(x) ] 
•   
•  ∀x [ Greedy(x) ∧ King(x) ] ⇒ Evil(x)  
•  ∀x ¬Greedy(x) ˅ ¬King(x) ˅ Evil(x)  
•  ∀x Greedy(x) ⇒ [ King(x) ⇒ Evil(x) ] 
• Common Mistakes: 
•  ∀x Greedy(x) ∧ King(x) ∧ Evil(x)  
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More fun with sentences 

• “Everyone has a favorite food.” 
•   [Use: Person(x), Food(y), Favorite(y, x) ] 
•   
•  ∀x ∃y Person(x) ⇒ [ Food(y) ∧ Favorite(y, x) ]  
•  ∀x Person(x) ⇒ ∃y [ Food(y) ∧ Favorite(y, x) ]  
•  ∀x ∃y ¬Person(x) ˅ [ Food(y) ∧ Favorite(y, x) ]  
•  ∀x ∃y [ ¬Person(x) ˅ Food(y) ] ∧ [ ¬Person(x) ˅ 

Favorite(y, x) ]  
•  ∀x ∃y [Person(x) ⇒ Food(y) ] ∧ [ Person(x) ⇒ Favorite(y, 

x) ] 
• Common Mistakes: 
•  ∀x ∃y [ Person(x) ∧ Food(y) ] ⇒ Favorite(y, x) 
•  ∀x ∃y Person(x) ∧ Food(y) ∧ Favorite(y, x) 
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Semantics: Interpretation 

• An interpretation of a sentence (wff) is an assignment that 
maps  
– Object constant symbols to objects in the world,  
– n-ary function symbols to n-ary functions in the world, 
– n-ary relation symbols to n-ary relations in the world 
 

• Given an interpretation, an atomic sentence has the value 
“true” if it denotes a relation that holds for those individuals 
denoted in the terms. Otherwise it has the value “false.” 
– Example: Kinship world: 

• Symbols = Ann, Bill, Sue, Married, Parent, Child, Sibling, … 
– World consists of individuals in relations: 

• Married(Ann,Bill) is false, Parent(Bill,Sue) is true, … 
 

• Your job, as a Knowledge Engineer, is to construct KB so it is 
true *exactly* for your world and intended interpretation. 
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Semantics: Models and Definitions 

• An interpretation and possible world satisfies a wff 
(sentence) if the wff has the value “true” under that 
interpretation in that possible world. 

• A domain and an interpretation that satisfies a wff is a model 
of that wff 

• Any wff that has the value “true” in all possible worlds and 
under all interpretations is valid. 

• Any wff that does not have a model under any interpretation 
is inconsistent or unsatisfiable. 

• Any wff that is true in at least one possible world under at 
least one interpretation is satisfiable. 

• If a wff w has a value true under all the models of a set of 
sentences KB then KB logically entails w. 
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Conversion to CNF 

• Everyone who loves all animals is loved by 
someone: 
 
∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)] 

 

1. Eliminate biconditionals and implications 
 
∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)] 

 
2. Move ¬ inwards: 
   ¬∀x p ≡ ∃x ¬p,  ¬ ∃x p ≡ ∀x ¬p 
 

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]  
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]  
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Conversion to CNF contd. 

3. Standardize variables: each quantifier should use a different 
one 
 

∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)] 
  
 

4. Skolemize: a more general form of existential instantiation. 
Each existential variable is replaced by a Skolem function of the 

enclosing universally quantified variables: 
 
 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x) 

 
5. Drop universal quantifiers: 

 [Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x) 
 
 

6. Distribute ∨ over ∧ : 
 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)] 
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Unification 

• Recall: Subst(θ, p) = result of substituting θ into sentence p 
 
 

• Unify algorithm: takes 2 sentences p and q and returns a 
unifier if one exists 
 

         Unify(p,q) = θ   where Subst(θ, p) = Subst(θ, q) 
 
 
 
• Example: 
       p = Knows(John,x) 
       q = Knows(John, Jane) 
 

           Unify(p,q) = {x/Jane} 
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Unification examples 

•  simple example: query = Knows(John,x), i.e., who does John know? 
   
 
p    q    θ   
Knows(John,x)  Knows(John,Jane)   {x/Jane} 
Knows(John,x) Knows(y,OJ)    {x/OJ,y/John} 
Knows(John,x)  Knows(y,Mother(y))  {y/John,x/Mother(John)} 
Knows(John,x) Knows(x,OJ)    {fail} 
 
 
 

 
• Last unification fails: only because x can’t take values John and OJ at 

the same time 
– But we know that if John knows x, and everyone (x) knows OJ, we should be 

able to infer that John knows OJ 
 

• Problem is due to use of same variable x in both sentences 
 

• Simple solution: Standardizing apart eliminates overlap of variables, 
e.g., Knows(z,OJ) 
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Unification 

• To unify Knows(John,x) and Knows(y,z), 
 
 θ = {y/John, x/z } or θ = {y/John, x/John, z/John} 
 

 
• The first unifier is more general than the second. 
 

 
• There is a single most general unifier (MGU) that is unique up 

to renaming of variables. 
 

MGU = { y/John, x/z } 
 
 

• General algorithm in Figure 9.1 in the text 
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Unification Algorithm 
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Knowledge engineering in FOL 

1. Identify the task 
 

2. Assemble the relevant knowledge 
 

3. Decide on a vocabulary of predicates, functions, and constants 
 

4. Encode general knowledge about the domain 
 

5. Encode a description of the specific problem instance 
 

6. Pose queries to the inference procedure and get answers 
 

7. Debug the knowledge base 
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The electronic circuits domain 

1. Identify the task 
– Does the circuit actually add properly?   

 
2. Assemble the relevant knowledge 

– Composed of wires and gates; Types of gates (AND, OR, XOR, NOT) 
–  
– Irrelevant: size, shape, color, cost of gates 
–  

 
3. Decide on a vocabulary 

– Alternatives: 
–  

Type(X1) = XOR  (function) 
Type(X1, XOR)   (binary predicate) 
XOR(X1) 
      (unary predicate) 
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The electronic circuits domain 

4. Encode general knowledge of the domain 
– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2) 

 
– ∀t Signal(t) = 1 ∨ Signal(t) = 0 
 
– 1 ≠ 0 

 
– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1) 

 
– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1 

 
– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0 
 
 
– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔ Signal(In(1,g)) ≠ 

Signal(In(2,g)) 
 

– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g)) 
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The electronic circuits domain 

5. Encode the specific problem instance 
Type(X1) = XOR   Type(X2) = XOR 
Type(A1) = AND   Type(A2) = AND 
Type(O1) = OR 
 
Connected(Out(1,X1),In(1,X2))  Connected(In(1,C1),In(1,X1)) 
Connected(Out(1,X1),In(2,A2))  Connected(In(1,C1),In(1,A1)) 
Connected(Out(1,A2),In(1,O1))  Connected(In(2,C1),In(2,X1)) 
Connected(Out(1,A1),In(2,O1))  Connected(In(2,C1),In(2,A1)) 
Connected(Out(1,X2),Out(1,C1))  Connected(In(3,C1),In(2,X2)) 
Connected(Out(1,O1),Out(2,C1))  Connected(In(3,C1),In(1,A2)) 
 
 



55 

The electronic circuits domain 

6. Pose queries to the inference procedure 
What are the possible sets of values of all the terminals for the adder 

circuit?  
 

 ∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) = 
i3 ∧ Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2 

 
 

 
 
 
 

7. Debug the knowledge base 
May have omitted assertions like 1 ≠ 0 
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CS-171 Final Review 

• Propositional Logic 
• (7.1-7.5) 

• First-Order Logic, Knowledge Representation 
• (8.1-8.5, 9.1-9.2) 

• Probability & Bayesian Networks 
• (13, 14.1-14.5) 

• Machine Learning 
• (18.1-18.4) 

• Questions on any topic 
• Pre-mid-term material if time and class interest 
• Please review your quizzes, mid-term, & old tests 

• At least one question from a prior quiz or old CS-171 test will 
appear on the Final Exam (and all other tests) 



You will be expected to know 
• Basic probability notation/definitions: 

– Probability model, unconditional/prior and 
conditional/posterior probabilities, factored 
representation (= variable/value pairs), random variable, 
(joint) probability distribution, probability density function 
(pdf), marginal probability, (conditional) independence, 
normalization, etc. 

• Basic probability formulae: 
– Probability axioms, sum rule, product rule, Bayes’ rule. 

• How to use Bayes’ rule: 
– Naïve Bayes model (naïve Bayes classifier) 

 



Syntax 
 

•Basic element: random variable 
•Similar to propositional logic: possible worlds defined by assignment of 

values to random variables. 
 

•Booleanrandom variables 

 e.g., Cavity (= do I have a cavity?) 
•Discreterandom variables 

 e.g., Weather is one of 
<sunny,rainy,cloudy,snow> 

•Domain values must be exhaustive and mutually exclusive 
 

•Elementary proposition is an assignment of a value to a random variable: 
 e.g., Weather = sunny; Cavity = false(abbreviated as ¬cavity) 

 
•Complex propositions formed from elementary propositions and standard 

logical connectives : 
 e.g., Weather = sunny ∨  Cavity = false 

 



Probability 
• P(a) is the probability of proposition “a” 

– e.g., P(it will rain in London tomorrow) 
– The proposition a is actually true or false in the real-world 
 

• Probability Axioms: 
– 0  ≤ P(a) ≤ 1 
– P(NOT(a))  = 1 – P(a) =>  ΣA P(A) = 1 
– P(true)  =  1 
– P(false) =  0 
– P(A OR B) = P(A) + P(B) – P(A AND B) 

 
• Any agent that holds degrees of beliefs that contradict these 

axioms will act irrationally in some cases 
 

• Rational agents cannot violate probability theory. 
─ Acting otherwise results in irrational behavior. 

 
 
 
 
 

 



Conditional Probability 
• P(a|b) is the conditional probability of proposition a, 

conditioned on knowing that b is true, 
– E.g., P(rain in London tomorrow | raining in London today) 
– P(a|b) is a “posterior” or conditional probability 
– The updated probability that a is true, now that we know b 
– P(a|b) = P(a ∧ b) / P(b) 
– Syntax:  P(a | b) is the probability of a given that b is true 

• a and b can be any propositional sentences 
• e.g., p( John wins OR Mary wins | Bob wins AND Jack loses) 

 

• P(a|b) obeys the same rules as probabilities, 
– E.g., P(a | b)  + P(NOT(a) | b) = 1 
– All probabilities in effect are conditional probabilities 

• E.g., P(a) = P(a | our background knowledge) 

 
 
 
 
 
 

 



Concepts of Probability 
• Unconditional Probability  

─ P(a), the probability of “a” being true, or P(a=True) 
─ Does not depend on anything else to be true (unconditional) 
─ Represents the probability prior to further information that may adjust it 

(prior) 
 

• Conditional Probability  
─ P(a|b), the probability of “a” being true, given that “b” is true 
─ Relies on “b” =  true (conditional) 
─ Represents the prior probability adjusted based upon new information “b” 

(posterior) 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a|b, c, d) 
 

• Joint Probability  
─ P(a, b) = P(a ˄ b), the probability of “a” and “b” both being true 
─ Can be generalized to more than 2 random variables: 

 e.g. P(a, b, c, d) 
 

 
 

 
 
 
 
 

 



Basic Probability Relationships 
• P(A) + P(¬ A) = 1 

– Implies that P(¬ A) = 1 ─ P(A) 

• P(A, B) = P(A ˄ B) = P(A) + P(B) ─ P(A ˅ B) 
– Implies that P(A ˅ B) = P(A) + P(B) ─ P(A ˄ B) 

• P(A | B) = P(A, B) / P(B) 
– Conditional probability; “Probability of A given B” 

• P(A, B) = P(A | B) P(B) 
– Product Rule (Factoring); applies to any number of variables 
– P(a, b, c,…z) = P(a | b, c,…z) P(b | c,...z) P(c|...z)...P(z) 

• P(A) =  ΣB,C P(A, B, C) =  Σb∈B,c∈C P(A, b, c) 
– Sum Rule (Marginal Probabilities); for any number of variables 
– P(A, D) = ΣB  ΣC  P(A, B, C, D) = Σb∈B  Σc∈C  P(A, b, c, D) 

• P(B | A) = P(A | B) P(B) / P(A) 
– Bayes’ Rule; for any number of variables 

 
 

 

 
 

 

You need to  
know these ! 



Summary of Probability Rules 
• Product Rule: 

– P(a, b) = P(a|b) P(b)  = P(b|a) P(a) 
– Probability of “a” and “b” occurring is the same as probability of “a” occurring 

given “b” is true, times the probability of “b” occurring. 
 e.g., P( rain, cloudy ) = P(rain | cloudy) * P(cloudy) 

 
• Sum Rule: (AKA Law of Total Probability) 

– P(a) =  Σb P(a, b) =  Σb  P(a|b) P(b),   where B is any random variable 
– Probability of “a” occurring is the same as the sum of all joint probabilities 

including the event, provided the joint probabilities represent all possible 
events. 

– Can be used to “marginalize” out other variables from probabilities, resulting 
in prior probabilities also being called marginal probabilities. 
 e.g., P(rain) = ΣWindspeed P(rain, Windspeed) 
  where Windspeed = {0-10mph, 10-20mph, 20-30mph, etc.} 

 
• Bayes’ Rule: 

- P(b|a) =  P(a|b) P(b)  / P(a) 
- Acquired from rearranging the product rule. 
- Allows conversion between conditionals, from  P(a|b) to P(b|a). 

 e.g.,  b = disease, a = symptoms 
         More natural to encode knowledge as P(a|b) than as P(b|a). 

 
 



Full Joint Distribution 

• We can fully specify a probability space by 
constructing a full joint distribution: 
– A full joint distribution contains a probability for 

every possible combination of variable values.  
– E.g., P( J=f, M=t, A=t, B=t, E=f ) 

 

• From a full joint distribution, the product rule, 
sum rule, and Bayes’ rule can create any 
desired joint and conditional probabilities. 

    

 



Computing with Probabilities: Law of Total Probability 

Law of Total Probability (aka “summing out” or marginalization) 
             P(a)  = Σb  P(a, b)  
                     = Σb  P(a | b) P(b)        where B is any random variable 
 
  

Why is this useful? 

  Given a joint distribution (e.g., P(a,b,c,d)) we can obtain any 
“marginal” probability (e.g., P(b)) by summing out the other 
variables, e.g., 

                   

                 P(b)  = Σa Σc Σd P(a, b, c, d)  
 

We can compute any conditional probability given a joint distribution, e.g., 
                

              P(c | b)  = Σa Σd P(a, c, d | b)  
                        =  Σa Σd P(a, c, d, b) / P(b)   
                          where P(b) can be computed as above 
 
 

 

 
 



Computing with Probabilities: 
The Chain Rule or Factoring 

We can always write 
      P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z) 
                                       (by definition of joint probability) 
 
Repeatedly applying this idea, we can write 
       P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z) 
 
This factorization holds for any ordering of the variables 
 
This is the chain rule for probabilities 
 



Independence 
• Formal Definition: 

– 2 random variables A and B are independent iff: 
   P(a, b) = P(a) P(b),     for all values a, b 

 

• Informal Definition: 
– 2 random variables A and B are independent iff: 
              P(a | b) = P(a)     OR   P(b | a) = P(b),   for all values a, b 
– P(a | b) = P(a) tells us that knowing b provides no change in our probability 

for a, and thus b contains no information about a. 
 

• Also known as marginal independence, as all other variables have 
been marginalized out. 

 
• In practice true independence is very rare: 

– “butterfly in China” effect 
– Conditional independence is much more common and useful   

 
 



Conditional Independence 
• Formal Definition: 

– 2 random variables A and B are conditionally independent given C iff: 
  P(a, b|c) = P(a|c) P(b|c),     for all values a, b, c 
 

• Informal Definition: 
– 2 random variables A and B are conditionally independent given C iff: 
  P(a|b, c) = P(a|c)     OR   P(b|a, c) = P(b|c),   for all values a, b, c 
– P(a|b, c) = P(a|c) tells us that learning about b, given that we already know c, 

provides no change in our probability for a, and thus b contains no 
information about a beyond what c provides. 
 

• Naïve Bayes Model: 
– Often a single variable can directly influence a number of other variables, all 

of which are conditionally independent, given the single variable. 
– E.g., k different symptom variables X1, X2, … Xk, and C = disease, reducing to: 
  P(X1, X2,…. XK | C) = P(C) Π  P(Xi | C) 

 

 



Examples of Conditional Independence 
• H=Heat, S=Smoke, F=Fire 

– P(H, S | F) = P(H | F) P(S | F) 
– P(S | F, S) = P(S | F) 
– If we know there is/is not a fire, observing heat tells us no more 

information about smoke 

• F=Fever, R=RedSpots, M=Measles 
– P(F, R | M) = P(F | M) P(R | M) 
– P(R | M, F) = P(R | M) 
– If we know we do/don’t have measles, observing fever tells us no 

more information about red spots 

• C=SharpClaws, F=SharpFangs, S=Species 
– P(C, F | S) = P(C | S) P(F | S) 
– P(F | S, C) = P(F | S) 
– If we know the species, observing sharp claws tells us no more 

information about sharp fangs 



CS-171 Final Review 
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Review Bayesian Networks (Chapter 14.1-5) 

• You will be expected to know: 
 

• Basic concepts and vocabulary of Bayesian networks. 
– Nodes represent random variables. 
– Directed arcs represent (informally) direct influences. 
– Conditional probability tables, P( Xi | Parents(Xi) ). 

 
• Given a Bayesian network: 

– Write down the full joint distribution it represents. 
– Inference by Variable Elimination 

 
• Given a full joint distribution in factored form: 

– Draw the Bayesian network that represents it. 
 

• Given a variable ordering and background assertions 
of conditional independence among the variables: 
– Write down the factored form of the full joint distribution, as 

simplified by the conditional independence assertions. 
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Bayesian Networks 

• Represent dependence/independence via a directed graph   
– Nodes = random variables 
– Edges = direct dependence 

• Structure of the graph  Conditional independence 
 

• Recall the chain rule of repeated conditioning: 
 
 

 
 

 
• Requires that graph is acyclic (no directed cycles) 
• 2 components to a Bayesian network 

– The graph structure (conditional independence assumptions) 
– The numerical probabilities (of each variable given its parents) 

 

The full joint distribution The graph-structured approximation 
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•   A Bayesian network specifies a joint distribution in a structured form: 

 

 

 

 

   

 
• Dependence/independence represented via a directed graph:   

− Node   = random variable 
− Directed Edge  = conditional dependence 
− Absence of Edge  = conditional independence 
 

 
•Allows concise view of joint distribution relationships:   

− Graph nodes and edges show conditional relationships between variables. 
− Tables provide probability data. 
 

Bayesian Network 

A B 

C 

p(A,B,C) = p(C|A,B)p(A|B)p(B) 
   = p(C|A,B)p(A)p(B) 

Full factorization 

After applying 
conditional 
independence 
from the graph 



Examples of 3-way Bayesian Networks 

A B 

C 

Independent Causes: 
p(A,B,C) = p(C|A,B)p(A)p(B) 
 
“Explaining away” effect: 
Given C, observing A makes B less likely 
e.g., earthquake/burglary/alarm example 
 
A and B are (marginally) independent  
but become dependent once C is known 
 
You heard alarm, and observe Earthquake 
…. It explains away burglary   

Nodes: Random Variables 
 A, B, C 
Edges: P(Xi | Parents)    Directed edge from parent nodes to Xi 
 A  C 
 B  C 

Independent Causes 
A Earthquake 
B Burglary 
C Alarm 



Examples of 3-way Bayesian Networks 

A C B Marginal Independence: 
p(A,B,C) = p(A) p(B) p(C) 

Nodes: Random Variables 
 A, B, C 
Edges: P(Xi | Parents)    Directed edge from parent nodes to Xi 
 No Edge!  



Extended example of 3-way Bayesian Networks 

A 

C B 

Conditionally independent effects: 
p(A,B,C) = p(B|A)p(C|A)p(A) 
 
B and C are conditionally independent 
Given A 
 
“Where there’s Smoke, there’s Fire.” 
 
If we see Smoke, we can infer Fire. 
 
If we see Smoke, observing Heat tells 
us very little additional information. 

Common Cause 
A : Fire 
B:  Heat 
C: Smoke 



Examples of 3-way Bayesian Networks 

A C B 

Markov dependence: 
p(A,B,C) = p(C|B) p(B|A)p(A) 
 
A affects B and B affects C 
Given B, A and C are independent 
 
e.g.  
If it rains today,  it will rain tomorrow with 90% 
 
On Wed morning… 
If you know it rained yesterday,  
it doesn’t matter whether it rained on Mon 

Nodes: Random Variables 
 A, B, C 
Edges: P(Xi | Parents)    Directed edge from parent nodes to Xi 
 A  B 
 B  C 

Markov Dependence 
A Rain on Mon 
B Ran on Tue 
C Rain on Wed 



Naïve Bayes Model                  (section 20.2.2 R&N 

3rd ed.) 

X1 X2 X3 

C 

Xn 

Basic Idea: We want to estimate P(C | X1,…Xn), but it’s hard to think about 
computing the probability of a class from input attributes of an example. 
 
Solution: Use Bayes’ Rule to turn P(C | X1,…Xn) into a proportionally 
equivalent expression that involves only P(C) and P(X1,…Xn  | C). 
Then assume that feature values are conditionally independent given class, 
which allows us to turn P(X1,…Xn  | C) into Πi  P(Xi | C). 
 
We estimate P(C) easily from the frequency with which each class appears 
within our training data, and we estimate P(Xi | C) easily from the frequency 
with which each Xi appears in each class C within our training data. 



Naïve Bayes Model                  (section 20.2.2 R&N 

3rd ed.) 

X1 X2 X3 

C 

Xn 

Bayes Rule:    P(C | X1,…Xn)  is proportional to P (C)  Πi  P(Xi | C) 
[note: denominator P(X1,…Xn)  is constant for all classes, may be ignored.] 
 
Features Xi are conditionally independent given the class variable C 

• choose the class value ci with the highest P(ci | x1,…, xn) 
• simple to implement, often works very well 
• e.g., spam email classification: X’s = counts of words in emails 

 
Conditional probabilities P(Xi | C) can easily be estimated from labeled date 

• Problem:  Need to avoid zeroes, e.g., from limited training data 
• Solutions: Pseudo-counts, beta[a,b] distribution, etc. 



Naïve Bayes Model (2) 
                 P(C | X1,…Xn)  =  α  P (C)  Π i  P(Xi | C) 
 
Probabilities P(C) and P(Xi | C) can easily be estimated from labeled data 
 
P(C = cj)  ≈ #(Examples with class label C = cj)  /  #(Examples) 
 
P(Xi = xik | C = cj) 
      ≈ #(Examples with attribute value Xi = xik and class label C = cj)  
  /  #(Examples with class label C = cj) 
 
Usually easiest to work with logs 
 log [ P(C | X1,…Xn) ] 
   =  log α  + log P (C) +   Σ  log P(Xi | C) 
 
DANGER: What if ZERO examples with value Xi = xik and class label C = cj ? 
An unseen example with value Xi = xik will NEVER predict class label C = cj ! 
 
Practical solutions: Pseudocounts, e.g., add 1 to every #() , etc. 
Theoretical solutions: Bayesian inference, beta distribution, etc. 



82 

Bigger Example 

• Consider the following 5 binary variables: 
– B = a burglary occurs at your house 
– E = an earthquake occurs at your house 
– A = the alarm goes off 
– J  = John calls to report the alarm 
– M = Mary calls to report the alarm 

 

• Sample Query: What is P(B|M, J) ? 
• Using full joint distribution to answer this 

question requires  
– 25 - 1= 31 parameters 

•  Can we use prior domain knowledge to come up 
with a Bayesian network that requires fewer 
probabilities? 



Constructing a Bayesian Network: 
Step 1 

• Order the variables in terms of influence (may be a partial order) 
 
            e.g., {E, B} -> {A} -> {J, M} 
 
 
• P(J, M, A, E, B) =  P(J, M | A, E, B) P(A| E, B) P(E, B) 

 
                           ≈  P(J, M | A)         P(A| E, B) P(E) P(B) 
 
       ≈  P(J | A) P(M | A) P(A| E, B) P(E) P(B) 
 
   
    These conditional independence assumptions are reflected in the 

graph structure of the Bayesian network 
 
 
 

 



Constructing this Bayesian Network: 
Step 2 

 
• P(J, M, A, E, B) =     
         P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B) 
 
 
 
 

 
• There are 3 conditional probability tables (CPDs) to be determined: 

 P(J | A),  P(M | A),  P(A | E, B)  
– Requiring 2 + 2 + 4 = 8 probabilities 

 
• And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities 

 
 

• Where do  these probabilities come from? 
– Expert knowledge 
– From data (relative frequency estimates) 
– Or a combination of both - see discussion in Section 20.1 and 20.2 (optional) 

 
 
 
 
 
 

 



The Resulting Bayesian Network 



The Bayesian Network from a different Variable 
Ordering 
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Computing Probabilities from a Bayesian Network 

 
 
P(B) 
.001 
  
B E P(A) 
t t .95 
t f .94 
f t .29 
f f .001 

 
 

P(E) 
.002 

A P(J) 
t .90 
f .05 

A P(M) 
t .70 
f .01 

B E 

A 

M J 

(Alarm) 

(Earthquake) (Burglary) 

(John calls) (Mary calls) 

Shown below is the Bayesian network for the Burglar Alarm problem, i.e., 
 P(J,M,A,B,E) = P(J | A) P(M | A) P(A | B, E) P(B) P(E).  

Suppose we wish to compute P( J=f ∧ M=t ∧ A=t ∧ B=t ∧ E=f ): 
 
P( J=f ∧ M=t ∧ A=t ∧ B=t ∧ E=f ) 

= P( J=f | A=t ) * P( M=t | A=t ) * P( A=t | B=t ∧ E=f ) * P( B=t ) * P( E=f ) 
 = .10 * .70 * .94 * .001 * .998 
 
Note:  P( E=f ) = [ 1 ─ P( E=t ) ] = [ 1 ─ .002 ) ] = .998 
           P( J=f | A=t ) = [ 1 ─ P( J=t | A=t ) ] = .10 



Inference in Bayesian Networks 
Simple Example 

A B 

C 

D 

} 
} 
} 

Query Variables A, B 

Hidden Variable C 

Evidence Variable D 

P(A) 
.05 
Disease1 

P(B) 
.02 
Disease2 

A B P(C|A,B) 
 t  t .95 
 t  f .90 
 f  t .90 
 f  f .005 
TempReg 

C P(D|C) 
 t     .95 
 f     .002 
Fever 

Note: Not an anatomically correct model of how diseases cause fever! 
 
Suppose that two different diseases influence some imaginary internal body 
temperature regulator, which in turn influences whether fever is present. 

(A=True, B=False | D=True) : Probability of getting Disease1 when we observe Fever 



Inference in Bayesian Networks 

• X = { X1, X2, …, Xk } = query variables of interest 
• E = { E1, …, El } = evidence variables that are observed 
• Y = { Y1, …, Ym } = hidden variables (nonevidence, nonquery) 

 
 

• What is the posterior distribution of X, given E? 
– P( X | e ) = α Σ y  P( X, y, e ) 

 
 

• What is the most likely assignment of values to X, given E? 
– argmax x P( x | e )  = argmax x  Σ y  P( x, y, e ) 

Normalizing constant α  = Σx  Σ y  P( X, y, e ) 



A B 

C 

D 

What is the posterior conditional 
distribution of our query variables, 
given that fever was observed? 
 
P(A,B|d) = α Σ c  P(A,B,c,d) 
 = α Σ c  P(A)P(B)P(c|A,B)P(d|c) 
 = α P(A)P(B) Σ c  P(c|A,B)P(d|c) 

P(A) 
.05 
Disease1 

P(B) 
.02 
Disease2 

A B P(C|A,B) 
 t  t .95 
 t  f .90 
 f  t .90 
 f  f .005 
TempReg 

C P(D|C) 
 t     .95 
 f     .002 
Fever 

P(a,b|d) = α P(a)P(b) Σ c  P(c|a,b)P(d|c) = α P(a)P(b){ P(c|a,b)P(d|c)+P(¬c|a,b)P(d|¬c) } 
 = α .05x.02x{.95x.95+.05x.002} ≈ α .000903 ≈ .014 
P(¬a,b|d) = α P(¬a)P(b) Σ c  P(c|¬a,b)P(d|c) = α P(¬a)P(b){ P(c|¬a,b)P(d|c)+P(¬c|¬a,b)P(d|¬c) } 
 = α .95x.02x{.90x.95+.10x.002} ≈ α .0162 ≈ .248 
P(a,¬b|d) = α P(a)P(¬b) Σ c  P(c|a,¬b)P(d|c) = α P(a)P(¬b){ P(c|a,¬b)P(d|c)+P(¬c|a,¬b)P(d|¬c) } 
 = α .05x.98x{.90x.95+.10x.002} ≈ α .0419 ≈ .642 
P(¬a,¬b|d) = α P(¬a)P(¬b) Σ c  P(c|¬a,¬b)P(d|c) = α P(¬a)P(¬b){ P(c|¬a,¬b)P(d|c)+P(¬c|¬a,¬b)P(d|¬c) } 
 = α .95x.98x{.005x.95+.995x.002} ≈ α .00627 ≈ .096 
α ≈ 1 / (.000903+.0162+.0419+.00627) ≈ 1 / .06527 ≈ 15.32    [Note: α = normalization constant, p. 493] 

Inference by Variable Elimination 
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CS-171 Final Review 

• Propositional Logic 
• (7.1-7.5) 

• First-Order Logic, Knowledge Representation 
• (8.1-8.5, 9.1-9.2) 

• Probability & Bayesian Networks 
• (13, 14.1-14.5) 

• Machine Learning 
• (18.1-18.4) 

• Questions on any topic 
• Pre-mid-term material if time and class interest 
• Please review your quizzes, mid-term, & old tests 

• At least one question from a prior quiz or old CS-171 test will 
appear on the Final Exam (and all other tests) 



92 

The importance of a good representation 

• Properties of a good representation: 
 

• Reveals important features  
• Hides irrelevant detail 
• Exposes useful constraints 
• Makes frequent operations easy-to-do 
• Supports local inferences from local features 

• Called the “soda straw” principle or “locality” principle 
• Inference from features “through a soda straw” 

• Rapidly or efficiently computable 
• It’s nice to be fast 
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Reveals important features / Hides irrelevant detail 

• “You can’t learn what you can’t represent.” --- G. Sussman 
 
• In search:  A man is traveling to market with a fox, a goose, 

and a bag of oats.  He comes to a river.  The only way across 
the river is a boat that can hold the man and exactly one of the 
fox, goose or bag of oats.  The fox will eat the goose if left alone 
with it, and the goose will eat the oats if left alone with it. 
 

• A good representation makes this problem easy: 
 
1110 
0010 
1010 
1111 
0001 
0101 

 
  

0000 1101 

1011 

0100 1110 

0010 1010 1111 

0001 

0101 
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Terminology 

• Attributes 
– Also known as features, variables, independent variables, 

covariates 
 

• Target Variable 
– Also known as goal predicate, dependent variable, … 

 
 

• Classification 
– Also known as discrimination, supervised classification, … 

 
• Error function 

– Objective function, loss function, … 
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Inductive learning 

• Let x represent the input vector of attributes 
 

• Let f(x) represent the value of the target variable for x 
– The implicit mapping from x to f(x) is unknown to us 
– We just have training data pairs, D = {x, f(x)} available 

 
• We want to learn a mapping from x to f, i.e.,  
            h(x; θ) is “close” to f(x) for all training data points x           
 
            θ are the parameters of our predictor h(..) 

 
• Examples: 

– h(x; θ) = sign(w1x1 + w2x2+ w3) 
 

– hk(x) = (x1 OR x2) AND (x3 OR NOT(x4)) 
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Empirical Error Functions 

• Empirical error function: 
      E(h) = Σx distance[h(x; θ) , f] 
 
e.g., distance = squared error if h and f are real-valued  (regression) 
        distance = delta-function if h and f are categorical  (classification) 
 
Sum is over all training pairs in the training data D 
 
 
 
In learning, we get to choose  
 
 1. what class of functions h(..) that we want to learn  
            – potentially a huge space!  (“hypothesis space”) 
 
    2. what error function/distance to use 
              - should be chosen to reflect real “loss” in problem 
              - but often chosen for mathematical/algorithmic convenience 
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Decision Tree Representations 

• Decision trees are fully expressive 
– can represent any Boolean function 
– Every path in the tree could represent 1 row in the truth table 
– Yields an exponentially large tree 

• Truth table is of size 2d, where d is the number of attributes 
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Pseudocode for Decision tree learning 
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Entropy with only 2 outcomes 

 
Consider 2 class problem: p = probability of class 1, 1 – p = probability 

of class 2 
 
In binary case, H(p) = - p log p  -  (1-p) log (1-p) 
 
 
 
 

 

H(p) 

0.5 1 0 

1 

p 
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Information Gain 

• H(p) = entropy of class distribution at a particular node 
 

• H(p | A) = conditional entropy = average entropy of 
conditional class distribution, after we have partitioned the 
data according to the values in A 
 

• Gain(A) = H(p) – H(p | A) 
 

• Simple rule in decision tree learning 
– At each internal node, split on the node with the largest 

information gain (or equivalently, with smallest H(p|A)) 
 

• Note that by definition, conditional entropy can’t be greater 
than the entropy 



101 

Overfitting and Underfitting 

X 

Y 



102 

A Complex Model 

X 

Y 

Y = high-order polynomial in X 
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A Much Simpler Model 

X 

Y 

Y = a X  + b  +  noise 
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How Overfitting affects Prediction 

Predictive 
Error 

Model Complexity 

Error on Training Data 

Error on Test Data 

Ideal Range 
for Model Complexity 

Overfitting Underfitting 
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Training and Validation Data 

Full Data Set 

Training Data 

Validation Data 

Idea: train each 
model on the 
“training data” 
 
and then test 
each model’s 
accuracy on 
the validation data 
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 The k-fold Cross-Validation Method 

• Why just choose one particular 90/10 “split” of the data? 
– In principle we could do this multiple times 
 

• “k-fold Cross-Validation” (e.g., k=10) 
– randomly partition our full data set into k disjoint subsets (each 

roughly of size n/k, n = total number of training data points) 
•for  i = 1:10  (here k = 10) 

–train on 90% of data, 
–Acc(i) =  accuracy on other 10% 

•end 

•Cross-Validation-Accuracy =  1/k  Σi  Acc(i) 
– choose the method with the highest cross-validation accuracy 
– common values for k are 5 and 10 
– Can also do “leave-one-out” where k = n 
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Disjoint Validation Data Sets 

Full Data Set 

Training Data 

Validation Data (aka Test Data) 

Validation  
Data 

1st partition 2nd partition 

3rd partition 4th partition 5th partition 
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CS-171 Final Review 

• Propositional Logic 
• (7.1-7.5) 

• First-Order Logic, Knowledge Representation 
• (8.1-8.5, 9.1-9.2) 

• Probability & Bayesian Networks 
• (13, 14.1-14.5) 

• Machine Learning 
• (18.1-18.4) 

• Questions on any topic 
• Pre-mid-term material if time and class interest 
• Please review your quizzes, mid-term, & old tests 

• At least one question from a prior quiz or old CS-171 test will 
appear on the Final Exam (and all other tests) 
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