CS-171, Intro to A.I. — Quiz#4 — Winter Quarter, 2018 — 20 minutes

YOUR NAME AND EMA	AIL ADDRESS:		
YOUR ID:	ID TO RIGHT:	ROW:	SEAT:
variable denoting the hand left- or right-handedness i l or r , and perhaps actual lindividual possesses. Furt	h) Bayesian Networks. (Adapted dedness of an individual x , with p is inherited by a simple mechanism handedness turns out mostly the shermore, perhaps the gene itself it a small nonzero probability m of orks:	ossible values l or r . A com; that is, perhaps there ame (with some probabins equally likely to be inlikely to be	common hypothesis is that is a gene G_x , also with value (lity s) as the gene an nerited from either of the
G_{mother} (A) G_{father} H_{mother} G_{child} H_{child}	\bigvee	H_{father}	G_{mother} (C) G_{father} H_{mother} G_{child} H_{child}
1.a. (5 pts) Which networ	ks above claim that $\mathbf{P}(G_{father}, G_{mo})$	$_{other},\;G_{child})=\mathbf{P}(G_{father})\;\mathbf{P}$	$(G_{mother}) \ \mathbf{P}(G_{child}) \ ?$
Write as many of the lette	rs A, B, and C as apply.		
1.b. (5 pts) Which networ	ks make independence claims that	at are consistent with the	e stated hypothesis?
Write as many of the lette	rs A, B, and C as apply.		
1.c. (5 pts) Which single	network is the best description of	the hypothesis?	
Write <u>one</u> of the letters A	, B, and C.		
1.d. (5 pts) How many pa	rameters (probabilities) are neede	ed for the joint distribution	on $\mathbf{P}(G_{father}, G_{mother}, G_{child})$?
Write your answer as a po	ositive integer.		
1.e. (5 pts) How many par	rameters are needed for network	A? Write an integer	
1.f. (5 pts) How many par	rameters are needed for network I	3? Write an integer	
1.g. (5 pts) How many pa	rameters are needed for network	C? Write an integer	

- **2.** (**35 pts total, 5 pts each**) **The Knowledge Engineering process.** Your book identifies seven sequential steps in the knowledge engineering process, which are given below. Unfortunately, the order of the steps has been scrambled. Please, straighten them out.
- A. Pose queries to the inference procedure and get answers
- B. Encode a description of the specific problem instance
- C. Identify the task
- D. Encode general knowledge about the domain
- E. Decide on a vocabulary of predicates, functions, and constants
- F. Debug the knowledge base
- G. Assemble the relevant knowledge

- **3.** (**30 pts total, 5 pts each**) **Logic-To-English.** For each of the following FOPC sentences on the left, write the letter corresponding to the best English sentence on the right. Use these intended interpretations:
 - (1) "Butterfly(x)" is intended to mean "x is a butterfly."
 - (2) "Flower(x)" is intended to mean "x is a flower."
 - (3) "FeedsOn(x, y)" is intended to mean "x feeds on y."

$\forall b \exists f \text{ Butterfly}(b) \Rightarrow [\text{ Flower}(f) \land \text{FeedsOn}(b, f)]$	A	Every butterfly feeds on every flower.
$\exists f \forall b \text{ Flower}(f) \land [\text{ Butterfly}(b) \Rightarrow \text{FeedsOn}(b, f)]$	В	For every flower, there is some
		butterfly who feeds on that flower.
$\forall f \exists b \text{ Flower}(f) \Rightarrow [\text{ Butterfly}(b) \land \text{ FeedsOn}(b, f)]$	C	There is some butterfly
		who feeds on some flower.
$\exists b \ \forall f \ Butterfly(b) \land [\ Flower(f) \Rightarrow FeedsOn(b, f)]$	D	For every butterfly, there is some
		flower that the butterfly feeds on.
$\forall b \ \forall f \ [\ Butterfly(b) \land Flower(f) \] \Rightarrow FeedsOn(b, f)$	Е	There is some butterfly who
		feeds on every flower.
$\exists b \ \exists f \ Butterfly(b) \land Flower(f) \land FeedsOn(b, f)$	F	There is some flower that
		every butterfly feeds on.

 $Scratch\ Paper\ (1)\ Please\ Do\ Not\ Detach\ From\ Test$

 $Scratch\ Paper\ (2)\ Please\ Do\ Not\ Detach\ From\ Test$