CS-171, Intro to A.I. - Quiz\#4 — Winter Quarter, 2018 - 20 minutes
YOUR NAME AND EMAIL ADDRESS: \qquad
YOUR ID: \qquad ID TO RIGHT: \qquad ROW: \qquad SEAT: \qquad

1. (35 pts total, $\mathbf{5}$ pts each) Bayesian Networks. (Adapted from Exercise 14.6 in R\&N.) Let H_{X} be a random variable denoting the handedness of an individual x, with possible values l or r. A common hypothesis is that left- or right-handedness is inherited by a simple mechanism; that is, perhaps there is a gene G_{x}, also with values l or r, and perhaps actual handedness turns out mostly the same (with some probability s) as the gene an individual possesses. Furthermore, perhaps the gene itself is equally likely to be inherited from either of the individual's parents, with a small nonzero probability m of a random mutation flipping the handedness. Consider these three networks:

1.a. (5 pts) Which networks above claim that $\mathbf{P}\left(G_{\text {father }}, G_{\text {mother }}, G_{\text {child }}\right)=\mathbf{P}\left(G_{\text {father }}\right) \mathbf{P}\left(G_{\text {mother }}\right) \mathbf{P}\left(G_{\text {child }}\right)$?

Write as many of the letters A, B, and C as apply. \qquad C
1.b. (5 pts) Which networks make independence claims that are consistent with the stated hypothesis?

Write as many of the letters A, B, and C as apply. \qquad A, B
1.c. ($\mathbf{5} \mathbf{~ p t s)}$ Which single network is the best description of the hypothesis?

Write one of the letters A, B, and C. \qquad A
1.d. (5 pts) How many parameters (probabilities) are needed for the joint distribution $\mathbf{P}\left(G_{\text {father }}, G_{\text {mother }}, G_{\text {child }}\right)$?

Write your answer as a positive integer. $7\left(=2^{3}-1\right) ; 8\left(=2^{3}\right)$ also will be accepted as correct
1.e.
1.e. (network A) $12=1$ each for $\mathrm{P}\left(\mathrm{G}_{\text {mother }}\right) \& P\left(\mathrm{G}_{\text {father }}\right) ; 2$ each for
$\mathrm{P}\left(\mathrm{H}_{\text {motherl }} \mathrm{G}_{\text {mother }}\right), \mathrm{P}\left(\mathrm{H}_{\text {fatherl }} \mathrm{G}_{\text {father }}\right), \& \mathrm{P}\left(\mathrm{H}_{\text {child }} \mathrm{G}_{\text {child }}\right)$; and 4 for
1.f. $P\left(G_{\text {child }} \mid G_{\text {mother }}, G_{\text {father }}\right)$.
1.g.
1.f. (network B) $18=1$ each for $\mathrm{P}\left(\mathrm{G}_{\text {mother }}\right) \& \mathrm{P}\left(\mathrm{G}_{\text {father }}\right)$, 2 each for
$\mathrm{P}\left(\mathrm{H}_{\text {motherl }} \mathrm{G}_{\text {mother }}\right) \& \mathrm{P}\left(\mathrm{H}_{\text {fatherl }} \mathrm{G}_{\text {father }}\right) ; 4$ for $\mathrm{P}\left(\mathrm{G}_{\text {child }} \mid \mathrm{G}_{\text {mother, }} \mathrm{G}_{\text {father }}\right)$; and 8 for $\mathrm{P}\left(\mathrm{H}_{\text {child }} \mid \mathrm{G}_{\text {child }}, \mathrm{H}_{\text {mother }}, \mathrm{H}_{\text {father }}\right)$.
1.g. (network C) $15=1$ each for $\mathrm{P}\left(\mathrm{G}_{\text {mother }}\right), \mathrm{P}\left(\mathrm{G}_{\text {father }}\right), \& \mathrm{P}\left(\mathrm{G}_{\text {child }}\right) 2$ each for $\mathrm{P}\left(\mathrm{H}_{\text {motherl }} \mathrm{G}_{\text {mother }}\right) \& \mathrm{P}\left(\mathrm{H}_{\text {fatherl }} \mathrm{G}_{\text {father }}\right)$; and 8 for $\mathrm{P}\left(\mathrm{H}_{\text {child }} \mid \mathrm{G}_{\text {child, }}, \mathrm{H}_{\text {mother, }}, \mathrm{H}_{\text {father }}\right)$.
2. (35 pts total, 5 pts each) The Knowledge Engineering process. Your book identifies seven sequential steps in the knowledge engineering process, which are given below. Unfortunately, the order of the steps has been scrambled. Please, straighten them out.
C. Identify the task

See Section 8.4

G. Assemble the relevant knowledge
E. Decide on a vocabulary of predicates, functions, and constants
D. Encode general knowledge about the domain
B. Encode a description of the specific problem instance
A. Pose queries to the inference procedure and get answers
F. Debug the knowledge base

Fill in the blanks with the letters A, B, C, D, E, F, and G, all in the proper sequence.
$C \quad \mathrm{G} \quad \mathrm{E} \quad \mathrm{D} \quad \mathrm{B} \quad \mathrm{A} \xrightarrow{\mathrm{F} .}$
2. ($\mathbf{3 0}$ pts total, $\mathbf{5}$ pts each) Logic-To-English. For each of the following FOPC sentences on the left, write the letter corresponding to the best English sentence on the right. Use these intended interpretations: (1)
"Butterfly(x)" is intended to mean "x is a butterfly." (2) "Flower(x)" is intended to mean "x is a flower." (3) "FeedsOn(x, y)" is intended to mean "x feeds on y."

D	$\forall \mathrm{b} \exists \mathrm{f}$ Butterfly(b) \Rightarrow [Flower(f) \wedge FeedsOn(b, f)]	A	Every butterfly feeds on ever)	6
F	$\exists \mathrm{f} \forall \mathrm{b}$ Flower(f) \wedge [Butterfly(b) \Rightarrow FeedsOn(b, f)]	B	For every flower, there is som butterfly who feeds on that flc	Note that \Rightarrow is the natural connective to use with \forall.
B	¢f $\exists \mathrm{b}$ Flower	C	There is some butterfly who feeds on some flower.	
E	$\exists \mathrm{b}$ f Butterfly(b) \wedge [Flower	D	For every butterfly, there is sc flower that the butterfly feeds	
A	$\forall \mathrm{b} \forall \mathrm{f}[$ Butterfly(b) \wedge Flower(f)] \Rightarrow FeedsOn(b,	E	There is some butterfly who feeds on every flower.	
C	ヨb ヨf Butterfly(b) ^ Flower(f) ^ FeedsOn(b, f)	F	There is some flower that every butterfly feeds on.	

