
CS-271P, Intro to A.I., Winter Quarter, 2018—Quiz # 1—20 minutes

NAME:

YOUR ID: ID TO RIGHT: ROW: NO. FROM RIGHT:

1. (12 pts total, 3 pts each) TASK ENVIRONMENT. Your book defines a task environment as a set of
four things, with the acronym PEAS. Fill in the blanks with the names of the PEAS components.

Performance (measure) Environment Actuators Sensors

2. (48 pts total, 2 pts each) PROPERTIES OF TASK ENVIRONMENT. Your textbook (Fig. 2.6) gives
several examples of task environments and their characteristics. Fill in the blanks with one of the
underlined terms in the heading. The first one is done for you as an example.

Task
Environment

Fully
Observable
or Partially
Observable

Single
Agent or
Multi
Agent

Deterministic
or Stochastic

Episodic or
Sequential

Static,
Semi, or
Dynamic

Discrete or
Continuous

Taxi driving
robot

Partially Multi Stochastic Sequential Dynamic Continuous

Crossword
Puzzle

Fully Single Deterministic Sequential Static Discrete

Chess or Go
with a clock

Fully Multi Deterministic Sequential Semi Discrete

Poker, bridge,
blackjack etc
.

Partially Multi Stochastic Sequential Static Discrete

Part-picking
robot

Partially Single Stochastic Episodic Dynamic Continuous

**** TURN PAGE OVER AND CONTINUE ON THE OTHER SIDE ****

See Section 2.3.1.

See Fig. 2.6, Section 2.3.2.

Cancelled because it was deemed confusing to students who had never before heard of a part-
picking robot. Cancelled means that everyone gets it right, regardless of what you answered.

2. (40 pts total, 8 pts each) STATE-SPACE SEARCH STRATEGIES. Execute Tree Search through this
graph (i.e., do not remember visited nodes). Step costs are given next to each arc. The successors of each
node are indicated by the directed arrows out of that node. Successors are returned in left-to-right order,
i.e., successors of S are (A, C), successors of A are (G, B), and successors of C are (B, G, C), in that
order. S is the only initial node, and G is the only goal node.
 For each search strategy below, show the order in which nodes are expanded (i.e., to expand a node
means that its children are generated), optionally ending with the goal node that is found, or indicate the
repeating cycle if the search gets stuck in a loop. Show the path from start to goal, or write “None.” Give the
cost of the path that is found, or write “None.” Do check for duplicate nodes in the Fringe/Frontier, and treat
them appropriately. Do not check for loops. Do not check for duplicate nodes in Expanded.

2.a. (8 pts total) DEPTH FIRST SEARCH.

(6 pts) Order of node expansion: S A (G)

(1 pt) Path found: S A G (1 pt) Cost of path found: 160

2.b. (8 pts total) BREADTH FIRST SEARCH.

(6 pts) Order of node expansion: S A (G)

(1 pt) Path found: S A G (1 pt) Cost of path found: 160

2.c. (8 pts total) UNIFORM COST SEARCH.

(6 pts) Order of node expansion: S A C B B C B (G) or S A C B C B (G)

(1 pt) Path found: S C B G (1 pt) Cost of path found: 39

2.d. (8 pts total) ITERATED DEEPENING SEARCH.

(6 pts) Order of node expansion: S S A (G)

(1 pt) Path found: S A G (1 pt) Cost of path found: 160

2.e. (8 pts total) BIDIRECTIONAL SEARCH. Use Breadth First Search. First expand S, then expand G
(invert the steps), then expand a node from Fringe(S), then expand a node from Fringe(G) (invert the steps),
then expand a node from Fringe(S), then expand a node from Fringe(G) (invert the steps), and so on. On the
backward search from G, nodes are returned in right-to-left order (which is left-to-right if you stand
on your head); i.e., successors of G are (C, B, A), successors of C are (C, S), successors of B are (C, A),
and successors of A are (S, A), in that order on the backward search.

(6 pts) Order of node expansion: S G (C)

(1 pt) Path found: S C G (1 pt) Cost of path found: 43

S

A C

G

B

31
24

12

6 3

150

10
15

See Sections 3.4.3-4
and Figs. 3.16-17.

See Section 3.4.1
and Figs. 3.11-13.

See Sections 3.4.4-5
and Figs. 3.17-19.

See Section 3.4.2
and Figs. 3.14-15.

See Sections 3.4.5
and Fig. 3.20.

Problem 2.a cancelled
for reasons discussed
in lecture. The solution
shown here is correct.

Fig. 3.14 Fig. 3.24

R&N Sec. 3.4.6 discusses the BDS termination condition for BFS. To clarify it, and to handle UCS:

 * For BFS, the search terminates when one fringe expands a node and discovers that one of the new
children is present in the other fringe. This is quick and easy because the other fringe already
maintains a hash table holding its fringe, as discussed in the lecture slides about removing duplicate
nodes from the fringe, so you just look up the new child in the other fringe's hash table. If present,
then you join the path from the Start to that child to the reverse of the path from the Goal to that
child, and you have your path from Start to Goal.

 * For UCS, the same applies, except that afterward you must continue searching until the sum of
the costs of the nodes at the head of each queue is greater than or equal to the cost of the path you just
found. This continuation guarantees that there is not a longer cheaper path somewhere in the queues.
Of course, if you find a cheaper solution as the search winds down, it replaces the previous solution.

