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Constraint Satisfaction Problems 
• What is a CSP? 

– Finite set of variables, X1, X2, …, Xn  
– Nonempty domain of possible values for each: D1, ..., Dn  
– Finite set of constraints, C1, ..., Cm 

• Each constraint Ci limits the values that variables can take, e.g., X1 ≠ X2 

– Each constraint Ci is a pair:  Ci = (scope, relation) 
• Scope = tuple of variables that participate in the constraint 
• Relation = list of allowed combinations of variables 
 May be an explicit list of allowed combinations 
 May be an abstract relation allowing membership testing & listing 

 

• CSP benefits 
– Standard representation pattern 
– Generic goal and successor functions 
– Generic heuristics (no domain-specific expertise required) 

 



Example: Sudoku 
• Problem specification 

Variables: {A1, A2, A3, … I7, I8, I9}  
Domains:  Di = { 1, 2, 3, … , 9 } 
Constraints: 
 each row, column “all different” 
  alldiff(A1,A2,A3…,A9), ... 
 each 3x3 block “all different” 
  alldiff(G7,G8,G9,H7,…I9), ... 
 
 
Task: solve (complete a partial solution) 
 
          check “well-posed”: exactly one solution? 
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1     2    3     4    5    6    7    8    9 



CSPs: What is a Solution? 
• State: assignment of values to some or all variables 

– Assignment is complete when every variable has an assigned value 
– Assignment is partial when one or more variables have no assigned value 

• Consistent assignment 
– An assignment that does not violate any constraint 

• A solution to a CSP is a complete and consistent assignment 
– All variables are assigned, and no constraints are violated 

 

• CSPs may require a solution that maximizes an objective function 
– Linear objective => linear programming or integer linear programming 
– Ex: “Weighted” CSPs 

 

• Examples of applications 
– Scheduling the time of observations on the Hubble Space Telescope 
– Airline schedules 
– Cryptography 
– Computer vision, image interpretation 



Example: Map coloring problem 
Adjacent regions must have different colors. 

(WA) 

(NT) 

(SA) 
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Example: Map coloring solution 
All variables assigned, all constraints satisfied. 
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Example: Map Coloring 

Variables:   
Domains:  Di = { red, green, blue } 
Constraints: bordering regions must have different colors: 
 
A solution is any setting of the variables that satisfies all the constraints, e.g., 

(WA) 

(NT) 

(SA) 

(Q) 

(NSW) 

(V) 
(T) 
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Example: Map Coloring 
• Constraint graph 

– Vertices: variables 
– Edges: constraints 
 (connect involved variables) 

 
 

• Graphical model 
– Abstracts the problem to a canonical form 
– Can reason about problem through graph connectivity 
– Ex: Tasmania can be solved independently (more later) 

 

• Binary CSP 
– Constraints involve at most two variables 
– Sometimes called “pairwise” 

 



Aside: Graph coloring 
• More general problem than map coloring 

 
• Planar graph: 
 graph in 2D plane with no  
    edge crossings 

 
• Guthrie’s conjecture (1852) 
 Every planar graph can be colored in ≤ 4 colors 

 
• Proved (using a computer) in 1977  (Appel & Haken 1977) 



Varieties of CSPs 
• Discrete variables 

– Finite domains, size d => O(dn) complete assignments 
• Ex: Boolean CSPs:  Boolean satisfiability (NP-complete) 

 

– Infinite domains (integers, strings, etc.) 
• Ex: Job scheduling, variables are start/end days for each job 
• Need a constraint language, e.g., StartJob_1 + 5 < StartJob_3 
• Infinitely many solutions 
• Linear constraints: solvable 
• Nonlinear: no general algorithm 

 

• Continuous variables 
– Ex: Building an airline schedule or class schedule 
– Linear constraints: solvable in polynomial time by LP methods 



Varieties of constraints 
• Unary constraints involve a single variable,  

– e.g., SA ≠ green 
 

• Binary constraints involve pairs of variables, 
– e.g., SA ≠ WA 

 
• Higher-order constraints involve 3 or more variables, 

– Ex: jobs A,B,C cannot all be run at the same time 
– Can always be expressed using multiple binary constraints 

 
• Preference (soft constraints) 

– Ex: “red is better than green” can often be represented by a cost for 
each variable assignment 

– Combines optimization with CSPs 
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Simplify… 
• We restrict attention to: 

 
• Discrete & finite domains 

– Variables have a discrete, finite set of values 

• No objective function 
– Any complete & consistent solution is OK 

• Solution 
– Find a complete & consistent assignment 

 

• Example: Sudoku puzzles 



Binary CSPs 
CSPs only need binary constraints! 

 

•Unary constraints 
– Just delete values from the variable’s domain 

 

•Higher order (3 or more variables): reduce to binary 
– Simple example: 3 variables X,Y,Z 
– Domains Dx={1,2,3}, Dy={1,2,3}, Dz={1,2,3} 
– Constraint C[X,Y,Z] = {X+Y=Z} = {(1,1,2),(1,2,3),(2,1,3)} 
 (Plus other variables & constraints elsewhere in the CSP) 

 

– Create a new variable W, taking values as triples (3-tuples) 
– Domain of W is Dw={(1,1,2),(1,2,3),(2,1,3)} 

• Dw is exactly the tuples that satisfy the higher-order constraint 
– Create three new constraints: 

• C[X,W] = { [1,(1,1,2)], [1,(1,2,3)], [2,(2,1,3) } 
• C[Y,W] = { [1,(1,1,2)], [2,(1,2,3)], [1,(2,1,3) } 
• C[Z,W] = { [2,(1,1,2)], [3,(1,2,3)], [3,(2,1,3) } 

 Other constraints elsewhere involving X,Y,Z are unaffected 



• Find numeric substitutions that make an equation hold: 
 

Example: Cryptarithmetic problems 

         T   W   O 
+       T   W   O 
=  F   O   U    R 

         7    3    4 
+       7    3    4 
=  1   4    6    8 

For example: 
 O   =  4  
 R   =  8 
 W  =  3 
 U  =  6 
 T  =  7 
 F  =  1 

Note: not unique – how many solutions? 

R 

U 

W 

T 

O 

F 

C2 

C3 

C1 

all-different 

O+O = R + 10*C1 

W+W+C1 = U + 10*C2 

T+T+C2 = O + 10*C3 

C3 = F 

Non-pairwise CSP: 

C1 = {0,1} 

C2 = {0,1} 

C3 = {0,1} 



• Try it yourself at home: 
 
 
 
 
 

 (a frequent request from college students to parents) 
 

Example: Cryptarithmetic problems 

          S    E   N   D 
+       M   O   R   E 
=  M  O   N   E   Y 



Random binary CSPs 
• A random binary CSP is defined by a four-tuple (n, d, p1, p2) 

– n = the number of variables. 
– d = the domain size of each variable. 
– p1 = probability a constraint exists between two variables. 
– p2 = probability a pair of values in the domains of two variables connected by a 

constraint is incompatible. 
• Note that R&N lists compatible pairs of values instead. 
• Equivalent formulations; just take the set complement. 

 

• (n, d, p1, p2) generate random binary constraints 
 

• The so-called “model B” of Random CSP (n, d, n1, n2)  
– n1 = p1 n(n-1)/2 pairs of variables are randomly and uniformly selected and binary 

constraints are posted between them. 
– For each constraint, n2 = p2 d^2 randomly and uniformly selected pairs of values are 

picked as incompatible. 
 

• The random CSP as an optimization problem (minCSP). 
– Goal is to minimize the total sum of values for all variables. 

(adapted from http://www.unitime.org/csp.php) 



CSP as a standard search problem 
• A CSP can easily be expressed as a standard search problem. 

 

• Incremental formulation 
– Initial State: the empty assignment {} 
– Actions: Assign a value to an unassigned variable provided that it does not 

violate a constraint 
– Goal test: the current assignment is complete  

 (by construction it is consistent) 
– Path cost: constant cost for every step (not really relevant) 

 
 
 
 
 
 
 

• Aside: can also use complete-state formulation 
– Local search techniques (Chapter 4) tend to work well 

BUT:  solution is at depth n  (# of variables) 
For BFS:  branching factor at top level is nd 
             next level:  (n-1)d 
             … 
Total:  n! dn leaves!    But there are only dn complete assignments! 



Commutativity 
• CSPs are commutative. 

– Order of any given set of actions has no effect on the outcome. 
– Example: choose colors for Australian territories, one at a time. 

• [WA=red then NT=green]    same as    [NT=green then WA=red] 

 
• All CSP search algorithms can generate successors by 

considering assignments for only a single variable at each 
node in the search tree 
   ⇒ there are dn irredundant leaves  

 
• (Figure out later to which variable to assign which value.) 



Backtracking search 
• Similar to depth-first search 

– At each level, pick a single variable to expand 
– Iterate over the domain values of that variable 

 

• Generate children one at a time, one per value 
– Backtrack when a variable has no legal values left 

 
• Uninformed algorithm 

– Poor general performance 
 



Backtracking search 
function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp]   then 
   add {var=value} to assignment  
   result ← RECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 

(R&N Fig. 6.5) 



Backtracking search 
• Expand deepest unexpanded node 
• Generate only one child at a time. 
• Goal-Test when inserted. 

– For CSP, Goal-test at bottom 
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Improving Backtracking       O(exp(n)) 
• Make our search more “informed” (e.g. heuristics) 

– General purpose methods can give large speed gains 
– CSPs are a generic formulation; hence heuristics are more “generic” as well 

 

• Before search: 
– Reduce the search space 
– Arc-consistency, path-consistency, i-consistency 
– Variable ordering (fixed) 

 

• During search: 
– Look-ahead schemes:  

• Detecting failure early; reduce the search space if possible 
• Which variable should be assigned next? 
• Which value should we explore first?   

– Look-back schemes: 
• Backjumping 
• Constraint recording 
• Dependency-directed backtracking 



Look-ahead: Variable and value orderings 
• Intuition:  

– Apply propagation at each node in the search tree (reduce future branching) 
– Choose a variable that will detect failures early       (low branching factor) 
– Choose value least likely to yield a dead-end           (find solution early if possible) 

 
• Forward-checking  

– (check each unassigned variable separately) 
• Maintaining arc-consistency (MAC)  

– (apply full arc-consistency) 
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function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 

Backtracking search (Figure 6.5) 



• Example: coloring 
– Dark nodes assigned, light nodes unassigned 

Dependence on variable ordering 

(1) Assign  WA, Q, V first: 
• 27 = 33 ways to color 
      assigned nodes consistently 
• none inconsistent (yet) 
• only 3 lead to solutions… 

(2) Assign  WA, SA, NT first: 
• 6 = 3! ways to color 
      assigned nodes consistently 
• all lead to solutions 
• no backtracking 



Dependence on variable ordering 
• Another graph coloring example: 



Minimum remaining values (MRV) 
• A heuristic for selecting the next variable 

– a.k.a. most constrained variable (MCV) heuristic 
 
 
 
 

– choose the variable with the fewest legal values 
 

– will immediately detect failure if X has no legal values 
 

– (Related to forward checking, later) 
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Degree heuristic 
• Another heuristic for selecting the next variable 

– a.k.a. most constraining variable heuristic 
 
 
 
 

– Select variable involved in the most constraints on other 
unassigned variables 
 

– Useful as a tie-breaker among most constrained variables 

 
What about the order to try values? 



function BACKTRACKING-SEARCH(csp) return a solution or failure 
 return RECURSIVE-BACKTRACKING({} , csp) 
 
function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure 
 if assignment is complete then return assignment 
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp) 
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do 
  if value is consistent with assignment according to CONSTRAINTS[csp] then 
   add {var=value} to assignment  
   result ← RRECURSIVE-BACTRACKING(assignment, csp) 
   if result ≠ failure  then return result 
   remove {var=value} from assignment 
 return failure 

Backtracking search (Figure 6.5) 



Least Constraining Value 
• Heuristic for selecting what value to try next 
• Given a variable, choose the least constraining value: 

– the one that rules out the fewest values in the remaining 
variables 
 
 
 
 
 
 

– Makes it more likely to find a solution early 
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Variable and value orderings 
• Minimum remaining values for variable ordering 
• Least constraining value for value ordering 

– Why do we want these?  Is there a contradiction? 
 

• Intuition:  
– Choose a variable that will detect failures early       (low branching factor) 
– Choose value least likely to yield a dead-end           (find solution early if possible) 

 

• MRV for variable selection reduces current branching factor 
– Low branching factor throughout tree = fast search 
– Hopefully, when we get to variables with currently many values, forward checking 

or arc consistency will have reduced their domains & they’ll have low branching too 

• LCV for value selection increases the chance of success 
– If we’re going to fail at this node, we’ll have to examine every value anyway 
– If we’re going to succeed, the earlier we do, the sooner we can stop searching 
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Summary 
• CSPs  

– special kind of problem: states defined by values of a fixed set of variables, 
goal test defined by constraints on variable values 

 
• Backtracking = depth-first search with one variable assigned per node 

 
• Heuristics 

– Variable ordering and value selection heuristics help significantly 
 

• Variable ordering (selection) heuristics 
– Choose variable with Minimum Remaining Values (MRV) 
– Degree Heuristic – break ties after applying MRV 

 
• Value ordering (selection) heuristic 

– Choose Least Constraining Value 
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