
Constraint satisfaction problems

CS271P, Winter 2018
Introduction to Artificial Intelligence

Prof. Richard Lathrop

Constraint Satisfaction Problems
• What is a CSP?

– Finite set of variables, X1, X2, …, Xn
– Nonempty domain of possible values for each: D1, ..., Dn
– Finite set of constraints, C1, ..., Cm

• Each constraint Ci limits the values that variables can take, e.g., X1 ≠ X2

– Each constraint Ci is a pair: Ci = (scope, relation)
• Scope = tuple of variables that participate in the constraint
• Relation = list of allowed combinations of variables
 May be an explicit list of allowed combinations
 May be an abstract relation allowing membership testing & listing

• CSP benefits
– Standard representation pattern
– Generic goal and successor functions
– Generic heuristics (no domain-specific expertise required)

Example: Sudoku
• Problem specification

Variables: {A1, A2, A3, … I7, I8, I9}
Domains: Di = { 1, 2, 3, … , 9 }
Constraints:
 each row, column “all different”
 alldiff(A1,A2,A3…,A9), ...
 each 3x3 block “all different”
 alldiff(G7,G8,G9,H7,…I9), ...

Task: solve (complete a partial solution)

 check “well-posed”: exactly one solution?

A

B

C

D

E

F

G

H

I

1 2 3 4 5 6 7 8 9

CSPs: What is a Solution?
• State: assignment of values to some or all variables

– Assignment is complete when every variable has an assigned value
– Assignment is partial when one or more variables have no assigned value

• Consistent assignment
– An assignment that does not violate any constraint

• A solution to a CSP is a complete and consistent assignment
– All variables are assigned, and no constraints are violated

• CSPs may require a solution that maximizes an objective function
– Linear objective => linear programming or integer linear programming
– Ex: “Weighted” CSPs

• Examples of applications
– Scheduling the time of observations on the Hubble Space Telescope
– Airline schedules
– Cryptography
– Computer vision, image interpretation

Example: Map coloring problem
Adjacent regions must have different colors.

(WA)

(NT)

(SA)

(Q)

(NSW)

(V)

(T)

Example: Map coloring solution
All variables assigned, all constraints satisfied.

(WA)

(NT)

(SA)

(Q)

(NSW)

(V)

(T)

Example: Map Coloring

Variables:
Domains: Di = { red, green, blue }
Constraints: bordering regions must have different colors:

A solution is any setting of the variables that satisfies all the constraints, e.g.,

(WA)

(NT)

(SA)

(Q)

(NSW)

(V)
(T)

(WA)

(NT)

(SA)

(Q)

(NSW)

(V)
(T)

Example: Map Coloring
• Constraint graph

– Vertices: variables
– Edges: constraints
 (connect involved variables)

• Graphical model
– Abstracts the problem to a canonical form
– Can reason about problem through graph connectivity
– Ex: Tasmania can be solved independently (more later)

• Binary CSP
– Constraints involve at most two variables
– Sometimes called “pairwise”

Aside: Graph coloring
• More general problem than map coloring

• Planar graph:
 graph in 2D plane with no
 edge crossings

• Guthrie’s conjecture (1852)
 Every planar graph can be colored in ≤ 4 colors

• Proved (using a computer) in 1977 (Appel & Haken 1977)

Varieties of CSPs
• Discrete variables

– Finite domains, size d => O(dn) complete assignments
• Ex: Boolean CSPs: Boolean satisfiability (NP-complete)

– Infinite domains (integers, strings, etc.)
• Ex: Job scheduling, variables are start/end days for each job
• Need a constraint language, e.g., StartJob_1 + 5 < StartJob_3
• Infinitely many solutions
• Linear constraints: solvable
• Nonlinear: no general algorithm

• Continuous variables
– Ex: Building an airline schedule or class schedule
– Linear constraints: solvable in polynomial time by LP methods

Varieties of constraints
• Unary constraints involve a single variable,

– e.g., SA ≠ green

• Binary constraints involve pairs of variables,
– e.g., SA ≠ WA

• Higher-order constraints involve 3 or more variables,

– Ex: jobs A,B,C cannot all be run at the same time
– Can always be expressed using multiple binary constraints

• Preference (soft constraints)

– Ex: “red is better than green” can often be represented by a cost for
each variable assignment

– Combines optimization with CSPs

11

Simplify…
• We restrict attention to:

• Discrete & finite domains

– Variables have a discrete, finite set of values

• No objective function
– Any complete & consistent solution is OK

• Solution
– Find a complete & consistent assignment

• Example: Sudoku puzzles

Binary CSPs
CSPs only need binary constraints!

•Unary constraints
– Just delete values from the variable’s domain

•Higher order (3 or more variables): reduce to binary
– Simple example: 3 variables X,Y,Z
– Domains Dx={1,2,3}, Dy={1,2,3}, Dz={1,2,3}
– Constraint C[X,Y,Z] = {X+Y=Z} = {(1,1,2),(1,2,3),(2,1,3)}
 (Plus other variables & constraints elsewhere in the CSP)

– Create a new variable W, taking values as triples (3-tuples)
– Domain of W is Dw={(1,1,2),(1,2,3),(2,1,3)}

• Dw is exactly the tuples that satisfy the higher-order constraint
– Create three new constraints:

• C[X,W] = { [1,(1,1,2)], [1,(1,2,3)], [2,(2,1,3) }
• C[Y,W] = { [1,(1,1,2)], [2,(1,2,3)], [1,(2,1,3) }
• C[Z,W] = { [2,(1,1,2)], [3,(1,2,3)], [3,(2,1,3) }

 Other constraints elsewhere involving X,Y,Z are unaffected

• Find numeric substitutions that make an equation hold:

Example: Cryptarithmetic problems

 T W O
+ T W O
= F O U R

 7 3 4
+ 7 3 4
= 1 4 6 8

For example:
 O = 4
 R = 8
 W = 3
 U = 6
 T = 7
 F = 1

Note: not unique – how many solutions?

R

U

W

T

O

F

C2

C3

C1

all-different

O+O = R + 10*C1

W+W+C1 = U + 10*C2

T+T+C2 = O + 10*C3

C3 = F

Non-pairwise CSP:

C1 = {0,1}

C2 = {0,1}

C3 = {0,1}

• Try it yourself at home:

 (a frequent request from college students to parents)

Example: Cryptarithmetic problems

 S E N D
+ M O R E
= M O N E Y

Random binary CSPs
• A random binary CSP is defined by a four-tuple (n, d, p1, p2)

– n = the number of variables.
– d = the domain size of each variable.
– p1 = probability a constraint exists between two variables.
– p2 = probability a pair of values in the domains of two variables connected by a

constraint is incompatible.
• Note that R&N lists compatible pairs of values instead.
• Equivalent formulations; just take the set complement.

• (n, d, p1, p2) generate random binary constraints

• The so-called “model B” of Random CSP (n, d, n1, n2)
– n1 = p1 n(n-1)/2 pairs of variables are randomly and uniformly selected and binary

constraints are posted between them.
– For each constraint, n2 = p2 d^2 randomly and uniformly selected pairs of values are

picked as incompatible.

• The random CSP as an optimization problem (minCSP).
– Goal is to minimize the total sum of values for all variables.

(adapted from http://www.unitime.org/csp.php)

CSP as a standard search problem
• A CSP can easily be expressed as a standard search problem.

• Incremental formulation
– Initial State: the empty assignment {}
– Actions: Assign a value to an unassigned variable provided that it does not

violate a constraint
– Goal test: the current assignment is complete

 (by construction it is consistent)
– Path cost: constant cost for every step (not really relevant)

• Aside: can also use complete-state formulation
– Local search techniques (Chapter 4) tend to work well

BUT: solution is at depth n (# of variables)
For BFS: branching factor at top level is nd
 next level: (n-1)d
 …
Total: n! dn leaves! But there are only dn complete assignments!

Commutativity
• CSPs are commutative.

– Order of any given set of actions has no effect on the outcome.
– Example: choose colors for Australian territories, one at a time.

• [WA=red then NT=green] same as [NT=green then WA=red]

• All CSP search algorithms can generate successors by

considering assignments for only a single variable at each
node in the search tree
 ⇒ there are dn irredundant leaves

• (Figure out later to which variable to assign which value.)

Backtracking search
• Similar to depth-first search

– At each level, pick a single variable to expand
– Iterate over the domain values of that variable

• Generate children one at a time, one per value
– Backtrack when a variable has no legal values left

• Uninformed algorithm

– Poor general performance

Backtracking search
function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

(R&N Fig. 6.5)

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

24

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

25

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

26

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

27

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

28

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

29

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

30

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

31

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

32

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

33

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

34

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Backtracking search
• Expand deepest unexpanded node
• Generate only one child at a time.
• Goal-Test when inserted.

– For CSP, Goal-test at bottom

35

Future= green dotted circles
Frontier=white nodes
Expanded/active=gray nodes
Forgotten/reclaimed= black nodes

Improving Backtracking O(exp(n))
• Make our search more “informed” (e.g. heuristics)

– General purpose methods can give large speed gains
– CSPs are a generic formulation; hence heuristics are more “generic” as well

• Before search:
– Reduce the search space
– Arc-consistency, path-consistency, i-consistency
– Variable ordering (fixed)

• During search:
– Look-ahead schemes:

• Detecting failure early; reduce the search space if possible
• Which variable should be assigned next?
• Which value should we explore first?

– Look-back schemes:
• Backjumping
• Constraint recording
• Dependency-directed backtracking

Look-ahead: Variable and value orderings
• Intuition:

– Apply propagation at each node in the search tree (reduce future branching)
– Choose a variable that will detect failures early (low branching factor)
– Choose value least likely to yield a dead-end (find solution early if possible)

• Forward-checking

– (check each unassigned variable separately)
• Maintaining arc-consistency (MAC)

– (apply full arc-consistency)

38

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Backtracking search (Figure 6.5)

• Example: coloring
– Dark nodes assigned, light nodes unassigned

Dependence on variable ordering

(1) Assign WA, Q, V first:
• 27 = 33 ways to color
 assigned nodes consistently
• none inconsistent (yet)
• only 3 lead to solutions…

(2) Assign WA, SA, NT first:
• 6 = 3! ways to color
 assigned nodes consistently
• all lead to solutions
• no backtracking

Dependence on variable ordering
• Another graph coloring example:

Minimum remaining values (MRV)
• A heuristic for selecting the next variable

– a.k.a. most constrained variable (MCV) heuristic

– choose the variable with the fewest legal values

– will immediately detect failure if X has no legal values

– (Related to forward checking, later)

42

43

Degree heuristic
• Another heuristic for selecting the next variable

– a.k.a. most constraining variable heuristic

– Select variable involved in the most constraints on other
unassigned variables

– Useful as a tie-breaker among most constrained variables

What about the order to try values?

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to CONSTRAINTS[csp] then
 add {var=value} to assignment
 result ← RRECURSIVE-BACTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var=value} from assignment
 return failure

Backtracking search (Figure 6.5)

Least Constraining Value
• Heuristic for selecting what value to try next
• Given a variable, choose the least constraining value:

– the one that rules out the fewest values in the remaining
variables

– Makes it more likely to find a solution early

45

Variable and value orderings
• Minimum remaining values for variable ordering
• Least constraining value for value ordering

– Why do we want these? Is there a contradiction?

• Intuition:
– Choose a variable that will detect failures early (low branching factor)
– Choose value least likely to yield a dead-end (find solution early if possible)

• MRV for variable selection reduces current branching factor
– Low branching factor throughout tree = fast search
– Hopefully, when we get to variables with currently many values, forward checking

or arc consistency will have reduced their domains & they’ll have low branching too

• LCV for value selection increases the chance of success
– If we’re going to fail at this node, we’ll have to examine every value anyway
– If we’re going to succeed, the earlier we do, the sooner we can stop searching

46

Summary
• CSPs

– special kind of problem: states defined by values of a fixed set of variables,
goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable assigned per node

• Heuristics

– Variable ordering and value selection heuristics help significantly

• Variable ordering (selection) heuristics
– Choose variable with Minimum Remaining Values (MRV)
– Degree Heuristic – break ties after applying MRV

• Value ordering (selection) heuristic

– Choose Least Constraining Value

	Constraint satisfaction problems
	Constraint Satisfaction Problems
	Example: Sudoku
	CSPs: What is a Solution?
	Example: Map coloring problem
	Example: Map coloring solution
	Example: Map Coloring
	Example: Map Coloring
	Aside: Graph coloring
	Varieties of CSPs
	Varieties of constraints
	Simplify…
	Binary CSPs
	Example: Cryptarithmetic problems
	Example: Cryptarithmetic problems
	Random binary CSPs
	CSP as a standard search problem
	Commutativity
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Backtracking search
	Improving Backtracking 	O(exp(n))
	Look-ahead: Variable and value orderings
	Backtracking search (Figure 6.5)
	Dependence on variable ordering
	Dependence on variable ordering
	Minimum remaining values (MRV)
	Degree heuristic
	Backtracking search (Figure 6.5)
	Least Constraining Value
	Variable and value orderings
	Summary

