Propositional Logic: Logical Agents (Part I)

You will be expected to know:

- Basic definitions (section 7.1, 7.3)
- Models and entailment (7.3)
- Syntax, logical connectives (7.4.1)
- Semantics (7.4.2)
- Simple inference (7.4.4)

Complete architectures for intelligence?

- Search?
- Solve the problem of what to do.
- Logic and inference?
- Reason about what to do.
- Encoded knowledge/"expert" systems?
- Know what to do.
- Learning?
- Learn what to do.
- Modern view: It's complex \& multi-faceted.

Inference in Formal Symbol Systems: Ontology, Representation, Inference

- Formal Symbol Systems
- Symbols correspond to things/ideas in the world
- Pattern matching \& rewrite corresponds to inference
- Ontology: What exists in the world?
- What must be represented?
- Representation: Syntax vs. Semantics
- What's Said vs. What's Meant
- Inference: Schema vs. Mechanism
- Proof Steps vs. Search Strategy

Ontology:
What kind of things exist in the world?
What do we need to describe and reason about?

Schematic perspective

If $K B$ is true in the real world, then any sentence α entailed by КВ is also true in the real world.

For example: If I tell you (1) Sue is Mary's sister, and (2) Sue is Amy's mother, then it necessarily follows in the world that Mary is Amy's aunt, even though I told you nothing at all about aunts. This sort of reasoning pattern is what we hope to capture.

Why Do We Need Logic?

- Problem-solving agents were very inflexible: hard code every possible state.
- Search is almost always exponential in the number of states.
- Problem solving agents cannot infer unobserved information.
- We want an algorithm that reasons in a way that resembles reasoning in humans.

Knowledge-Based Agents

- $\mathrm{KB}=$ knowledge base
- A set of sentences or facts
- e.g., a set of statements in a logic language
- Inference
- Deriving new sentences from old
- e.g., using a set of logical statements to infer new ones
- A simple model for reasoning
- Agent is told or perceives new evidence
- E.g., agent is told or perceives that A is true
- Agent then infers new facts to add to the KB
- E.g., $K B=\{(A->(B O R C)) ;(n o t C)\}$ then given A and not C the agent can infer that B is true
- B is now added to the KB even though it was not explicitly asserted, i.e., the agent inferred B

Types of Logics

- Propositional logic: concrete statements that are either true or false
- E.g., John is married to Sue.
- Predicate logic (also called first order logic, first order predicate calculus): allows statements to contain variables, functions, and quantifiers
- For all X, Y : If X is married to Y then Y is married to X.
- Probability: statements that are possibly true; the chance I win the lottery?
- Fuzzy logic: vague statements; paint is slightly grey; sky is very cloudy.
- Modal logic is a class of various logics that introduce modalities:
- Temporal logic: statements about time; John was a student at UCI for four years, and before that he spent six years in the US Marine Corps.
- Belief and knowledge: Mary knows that John is married to Sue; a poker player believes that another player will fold upon a large bluff.
- Possibility and Necessity: What might happen (possibility) and must happen (necessity); I might go to the movies; I must die and pay taxes.
- Obligation and Permission: It is obligatory that students study for their tests; it is permissible that I go fishing when I am on vacation.

Other Reasoning Systems

- How to produce new facts from old facts?
- Induction
- Reason from facts to the general law
- Scientific reasoning, machine learning
- Abduction
- Reason from facts to the best explanation
- Medical diagnosis, hardware debugging
- Analogy (and metaphor, simile)
- Reason that a new situation is like an old one

Wumpus World PEAS

description

- Performance measure
- gold: +1000, death: -1000
- -1 per step, -10 for using the arrow
- Environment
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Would DFS work well? A*?

- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Exploring a wumpus world

We need rather sophisticated reasoning here!

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Logic

- We used logical reasoning to find the gold.
- Logics are formal languages for representing information such that conclusions can be drawn from formal inference patterns
- Syntax defines the well-formed sentences in the language
- Semantics define the "meaning" or interpretation of sentences:
- connect symbols to real events in the world
- i.e., define truth of a sentence in a world
- E.g., the language of arithmetic:
$-x+2 \geq y$ is a sentence
$-x 2+y>\{ \}$ is not a sentence $\} \longrightarrow$ syntax
$-x+2 \geq y$ is true in a world where $x=7, y=1$
$-x+2 \geq y$ is false in a world where $x=0, y=6\}$

Schematic perspective

If $K B$ is true in the real world, then any sentence α entailed by КВ is also true in the real world.

For example: If I tell you (1) Sue is Mary's sister, and (2) Sue is Amy's mother, then it necessarily follows in the world that Mary is Amy's aunt, even though I told you nothing at all about aunts. This sort of reasoning pattern is what we hope to capture.

Entailment

- Entailment means that one thing follows from another set of things:

$$
K B \neq \alpha
$$

- Knowledge base $K B$ entails sentence α if and only if α is true in all worlds wherein $K B$ is true
- E.g., the KB = "the Giants won and the Reds won" entails $\alpha=$ "The Giants won".
- E.g., KB = " $x+y=4$ " entails $\alpha=$ " $4=x+y$ "
- E.g., KB = "Mary is Sue's sister and Amy is Sue's daughter" entails $\alpha=$ "Mary is Amy's aunt."
- The entailed a MUST BE TRUE in ANY world in which KB IS TRUE.

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Then KB $=\alpha$ iff $M(K B) \subseteq M(\alpha)$
- E.g. $K B=$ Giants won and Reds won entails $\alpha=$ Giants won
- Think of KB and α as collections of constraints and of models m as possible states. $\mathrm{M}(\mathrm{KB})$ are the solutions to $K B$ and $M(\alpha)$ the solutions to α.

Then, $\mathrm{KB} \neq \alpha$ when all solutions to KB are also solutions to α.

Wumpus models

All possible models in this reduced Wumpus world. What can we infer?

Wumpus models

- $M(K B)=$ all possible wumpus-worlds consistent with the observations and the "physics" of the Wumpus world.

Wumpus models

Now we have a query sentence, $\alpha_{1}=$ " $[1,2]$ is safe" $K B \neq \alpha_{1}$, proved by model checking $\mathrm{M}(\mathrm{KB})$ (red outline) is a subset of $\mathrm{M}\left(\alpha_{1}\right)$ (orange dashed outline) $\Rightarrow \alpha_{1}$ is true in any world in which KB is true

Wumpus models

Now we have another query sentence, $\alpha_{2}=$ "[2,2] is safe" $K B \npreceq \alpha_{2}$, proved by model checking
$M(K B)$ (red outline) is a not a subset of $M\left(\alpha_{2}\right)$ (dashed outline)
$\Rightarrow \alpha_{2}$ is false in some world(s) in which KB is true

Recap propositional logic: Syntax

- Propositional logic is the simplest logic - illustrates basic ideas
- The proposition symbols $\mathrm{P}_{1}, \mathrm{P}_{2}$ etc are sentences
- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_{1} and S_{2} are sentences, $S_{1} \wedge S_{2}$ is a sentence (conjunction)
- If S_{1} and S_{2} are sentences, $S_{1} \vee S_{2}$ is a sentence (disjunction)
- If S_{1} and S_{2} are sentences, $S_{1} \Rightarrow S_{2}$ is a sentence (implication)
- If S_{1} and S_{2} are sentences, $S_{1} \Leftrightarrow S_{2}$ is a sentence (biconditional)

Recap propositional logic: Semantics

Each model/world specifies true or false for each proposition symbol

E.g.$P_{1,2}$ $P_{2,2}$$\quad P_{3,1}$		
false	true	false

With these symbols, 8 possible models, can be enumerated automatically.
Rules for evaluating truth with respect to a model m :

$\neg S$	is true iff*	S is false
$S_{1} \wedge S_{2}$	is true iff	S_{1} is true and
$S_{1} \vee S_{2}$ is true iff	S_{2} is true	
$S_{1} \Rightarrow S_{2}$ is true iff or	S_{1} is false or	S_{2} is true true
i.e.,	is false iff	S_{1} is true and
$S_{1} \Leftrightarrow S_{2}$ is true iff	$S_{1} \Rightarrow S_{2}$ is true alse	

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$
\neg \mathrm{P}_{1,2} \wedge\left(\mathrm{P}_{2,2} \vee \mathrm{P}_{3,1}\right)=\text { true } \wedge(\text { true } \vee \text { false })=\text { true } \wedge \text { true }=\text { true }
$$

* iff = if and only if

Recap truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

OR: P or Q is true or both are true. XOR: P or Q is true but not both.

Implication is always true when the premises are False!

Inference by enumeration
 (generate the truth table = model checking)

- Enumeration of all models is sound and complete.
- For n symbols, time complexity is $O\left(2^{n}\right)$...
- We need a smarter way to do inference!
- In particular, we are going to infer new logical sentences from the data-base and see if they match a query.

Logical equivalence

- To manipulate logical sentences we need some rewrite rules.
- Two sentences are logically equivalent iff they are true in same models: $\alpha \equiv \beta$ iff $\alpha=\beta$ and $\beta \equiv \alpha$

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg) \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg \neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, $\quad A \vee \neg A, \quad A \Rightarrow A, \quad(A \wedge(A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:
$K B$ = α if and only if ($K B \Rightarrow \alpha$) is valid
A sentence is satisfiable if it is true in some model
e.g., AvB, C

A sentence is unsatisfiable if it is false in all models e.g., $\mathrm{A} \wedge \neg \mathrm{A}$

Satisfiability is connected to inference via the following:
$K B \neq \alpha$ if and only if ($K B \wedge \neg \alpha$) is unsatisfiable
(there is no model for which $\mathrm{KB}=$ true and α is false)

Summary (Part I)

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundness: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences
- valid: sentence is true in every model (a tautology)
- Logical equivalences allow syntactic manipulations
- Propositional logic lacks expressive power
- Can only state specific facts about the world.
- Cannot express general rules about the world (use First Order Predicate Logic)

