
CS-271P Final Review
• Propositional Logic

• (7.1-7.5)
• First-Order Logic, Knowledge Representation

• (8.1-8.5, 9.1-9.2)
• Constraint Satisfaction Problems

• (6.1-6.4, except 6.3)
• Machine Learning

• (18.1-18.4)
• Questions on any topic
• Pre-mid-term material if time and class interest
• Please review your quizzes, mid-term, & old tests

• At least one question from a prior quiz or test will appear on the
Final Exam (and all other tests)

Review Propositional Logic
Chapter 7.1-7.5

• Definitions:
– Syntax, Semantics, Sentences, Propositions, Entails, Follows, Derives,

Inference, Sound, Complete, Model, Satisfiable, Valid (or Tautology)

• Syntactic Transformations:
– E.g., (A ⇒ B) ⇔ (¬A ∨ B)

• Semantic Transformations:
– E.g., (KB |= α) ≡ (|= (KB ⇒ α)

• Truth Tables:
– Negation, Conjunction, Disjunction, Implication, Equivalence

(Biconditional)

• Inference:
– By Model Enumeration (truth tables)
– By Resolution

Recap propositional logic: Syntax

• Propositional logic is the simplest logic – illustrates basic
ideas

• The proposition symbols P1, P2 etc are sentences

– If S is a sentence, ¬S is a sentence (negation)
– If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)
– If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)
– If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication)
– If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional)

Recap propositional logic:
Semantics

Each model/world specifies true or false for each proposition symbol
E.g., P1,2 P2,2 P3,1
 false true false
With these symbols, 8 possible models can be enumerated automatically.

Rules for evaluating truth with respect to a model m:
 ¬S is true iff S is false
 S1 ∧ S2 is true iff S1 is true and S2 is true
 S1 ∨ S2 is true iff S1is true or S2 is true
 S1 ⇒ S2 is true iff S1 is false or S2 is true
 (i.e., is false iff S1 is true and S2 is false)
 S1 ⇔ S2 is true iff S1⇒S2 is true and S2⇒S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (true ∨ false) = true ∧ true = true

Recap propositional logic:
Truth tables for connectives

OR: P or Q is true or both are true.
XOR: P or Q is true but not both.

Implication is always true
when the premises are False!

Recap propositional logic:
Logical equivalence and rewrite rules

• To manipulate logical sentences we need some rewrite rules.
• Two sentences are logically equivalent iff they are true in same

models: α ≡ ß iff α╞ β and β╞ α

You need to
know these !

Recap propositional logic:
Entailment

• Entailment means that one thing follows from
another:

KB ╞ α

• Knowledge base KB entails sentence α if and only if α
is true in all worlds where KB is true

– E.g., the KB containing “the Giants won and the Reds won”

entails “The Giants won”.
– E.g., x+y = 4 entails 4 = x+y
– E.g., “Mary is Sue’s sister and Amy is Sue’s daughter”

entails “Mary is Amy’s aunt.”

Review: Models (and in FOL,
Interpretations)

• Models are formal worlds in which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)
– E.g. KB, = “Mary is Sue’s sister
 and Amy is Sue’s daughter.”
– α = “Mary is Amy’s aunt.”

• Think of KB and α as constraints,

 and of models m as possible states.
• M(KB) are the solutions to KB
 and M(α) the solutions to α.
• Then, KB ╞ α, i.e., ╞ (KB ⇒ a) ,
 when all solutions to KB are also solutions to α.

Review: Wumpus models

• KB = all possible wumpus-worlds consistent
with the observations and the “physics” of the
Wumpus world.

Review: Wumpus models

α1 = "[1,2] is safe", KB ╞ α1, proved by model checking.

Every model that makes KB true also makes α1 true.

Wumpus models

α2 = "[2,2] is safe", KB ╞ α2

Review: Schematic for Follows, Entails, and Derives

If KB is true in the real world,
then any sentence α entailed by KB
and any sentence α derived from KB
 by a sound inference procedure
is also true in the real world.

Sentences Sentence
Derives

Inference

Schematic Example: Follows, Entails, and Derives

Inference

“Mary is Sue’s sister and
Amy is Sue’s daughter.” “Mary is

Amy’s aunt.” Representation

Derives

Entails

Follows
World

Mary Sue

Amy

“Mary is Sue’s sister and
Amy is Sue’s daughter.”

“An aunt is a sister
of a parent.”

“An aunt is a sister
of a parent.”

Sister

Daughter

Mary

Amy

Aunt

“Mary is
Amy’s aunt.”

Is it provable?

Is it true?

Is it the case?

Recap propositional logic: Validity and satisfiability

A sentence is valid if it is true in all models,
e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model

e.g., A∨ B, C

A sentence is unsatisfiable if it is false in all models
e.g., A∧¬A

Satisfiability is connected to inference via the following:

KB ╞ A if and only if (KB ∧¬A) is unsatisfiable
(there is no model for which KB is true and A is false)

Inference Procedures
• KB ├ i A means that sentence A can be derived from KB by procedure i

• Soundness: i is sound if whenever KB ├i α, it is also true that KB╞ α

– (no wrong inferences, but maybe not all inferences)

• Completeness: i is complete if whenever KB╞ α, it is also true that KB ├i α
– (all inferences can be made, but maybe some wrong extra ones as

well)

• Entailment can be used for inference (Model checking)
– enumerate all possible models and check whether α is true.
– For n symbols, time complexity is O(2n)...

• Inference can be done directly on the sentences
– Forward chaining, backward chaining, resolution (see FOPC, later)

Resolution = Efficient Implication

(OR A B C D)
(OR ¬A E F G)

(OR B C D E F G)

(NOT (OR B C D)) => A
A => (OR E F G)
--
(NOT (OR B C D)) => (OR E F G)
--
(OR B C D E F G)

->Same ->
->Same ->

Recall that (A => B) = ((NOT A) OR B)
and so:
 (Y OR X) = ((NOT X) => Y)
 ((NOT Y) OR Z) = (Y => Z)
which yields:
 ((Y OR X) AND ((NOT Y) OR Z)) = ((NOT X) => Z) = (X OR Z)

Recall: All clauses in KB are conjoined by an implicit AND (= CNF representation).

Resolution Examples

• Resolution: inference rule for CNF: sound and complete! *
()
()

()

A B C
A

B C

∨ ∨

¬
− − − − − − − − − − − −

∴ ∨

“If A or B or C is true, but not A, then B or C must be true.”

()
()

()

A B C
A D E

B C D E

∨ ∨

¬ ∨ ∨
− − − − − − − − − − −

∴ ∨ ∨ ∨

“If A is false then B or C must be true, or if A is true
then D or E must be true, hence since A is either true or
false, B or C or D or E must be true.”

()
()

()

A B
A B

B B B

∨

¬ ∨
− − − − − − − −

∴ ∨ ≡ Simplification
is done always.

* Resolution is “refutation complete”
in that it can prove the truth of any
entailed sentence by refutation.

“If A or B is true, and
not A or B is true,
then B must be true.”

Only Resolve ONE Literal Pair!
If more than one pair, result always = TRUE.

Useless!! Always simplifies to TRUE!!
No!
(OR A B C D)
(OR ¬A ¬B F G)

(OR C D F G)
No! This is wrong!

Yes! (but = TRUE)
(OR A B C D)
(OR ¬A ¬B F G)

(OR B ¬B C D F G)
Yes! (but = TRUE)

No!
(OR A B C D)
(OR ¬A ¬B ¬C)

(OR D)
No! This is wrong!

Yes! (but = TRUE)
(OR A B C D)
(OR ¬A ¬B ¬C)

(OR A ¬A B ¬B D)
Yes! (but = TRUE)

• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the (negated) query.
• One of two things can happen:

1. We find which is unsatisfiable. I.e. we can entail the query.

2. We find no contradiction: there is a model that satisfies the sentence
 (non-trivial) and hence we cannot entail the query.

Resolution Algorithm

|KB equivalent to
KB unsatisfiable

α
α

=

∧ ¬

P P∧ ¬

KB α∧ ¬

Resolution example

• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1

• α = ¬P1,2
KB α∧ ¬

False in
all worlds

True!

¬P2,1

Detailed Resolution Proof Example

• In words: If the unicorn is mythical, then it is immortal, but if it is not
mythical, then it is a mortal mammal. If the unicorn is either immortal or a
mammal, then it is horned. The unicorn is magical if it is horned.
 Prove that the unicorn is both magical and horned.
((NOT Y) (NOT R)) (M Y) (R Y) (H (NOT M))
(H R) ((NOT H) G) ((NOT G) (NOT H))

• Fourth, produce a resolution proof ending in ():
• Resolve (¬H ¬G) and (¬H G) to give (¬H)
• Resolve (¬Y ¬R) and (Y M) to give (¬R M)
• Resolve (¬R M) and (R H) to give (M H)
• Resolve (M H) and (¬M H) to give (H)
• Resolve (¬H) and (H) to give ()

• Of course, there are many other proofs, which are OK iff correct.

Propositional Logic --- Summary
• Logical agents apply inference to a knowledge base to derive new

information and make decisions

• Basic concepts of logic:
– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: necessary truth of one sentence given another
– inference: deriving sentences from other sentences
– soundness: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences
– valid: sentence is true in every model (a tautology)

• Logical equivalences allow syntactic manipulations

• Propositional logic lacks expressive power

– Can only state specific facts about the world.
– Cannot express general rules about the world
 (use First Order Predicate Logic instead)

CS-271P Final Review
• Propositional Logic

• (7.1-7.5)
• First-Order Logic, Knowledge Representation

• (8.1-8.5, 9.1-9.2)
• Constraint Satisfaction Problems

• (6.1-6.4, except 6.3)
• Machine Learning

• (18.1-18.4)
• Questions on any topic
• Pre-mid-term material if time and class interest
• Please review your quizzes, mid-term, & old tests

• At least one question from a prior quiz or test will appear on the
Final Exam (and all other tests)

24

Knowledge Representation using First-Order Logic

• Propositional Logic is Useful --- but has Limited Expressive Power

• First Order Predicate Calculus (FOPC), or First Order Logic (FOL).
– FOPC has greatly expanded expressive power, though still limited.

• New Ontology

– The world consists of OBJECTS (for propositional logic, the world was facts).
– OBJECTS have PROPERTIES and engage in RELATIONS and FUNCTIONS.

• New Syntax

– Constants, Predicates, Functions, Properties, Quantifiers.

• New Semantics
– Meaning of new syntax.

• Knowledge engineering in FOL

25

Review: Syntax of FOL: Basic elements

• Constants KingJohn, 2, UCI,...

• Predicates Brother, >,...

• Functions Sqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Connectives ¬, ⇒, ∧, ∨, ⇔

• Equality =

• Quantifiers ∀, ∃

26

Syntax of FOL: Basic syntax elements are symbols

• Constant Symbols:
– Stand for objects in the world.

• E.g., KingJohn, 2, UCI, ...

• Predicate Symbols

– Stand for relations (maps a tuple of objects to a truth-value)
• E.g., Brother(Richard, John), greater_than(3,2), ...

– P(x, y) is usually read as “x is P of y.”
• E.g., Mother(Ann, Sue) is usually “Ann is Mother of Sue.”

• Function Symbols

– Stand for functions (maps a tuple of objects to an object)
• E.g., Sqrt(3), LeftLegOf(John), ...

• Model (world) = set of domain objects, relations, functions
• Interpretation maps symbols onto the model (world)

– Very many interpretations are possible for each KB and world!
– Job of the KB is to rule out models inconsistent with our knowledge.

27

Syntax of FOL: Terms

• Term = logical expression that refers to an object

• There are two kinds of terms:

– Constant Symbols stand for (or name) objects:

• E.g., KingJohn, 2, UCI, Wumpus, ...

– Function Symbols map tuples of objects to an object:
• E.g., LeftLeg(KingJohn), Mother(Mary), Sqrt(x)
• This is nothing but a complicated kind of name

– No “subroutine” call, no “return value”

28

Syntax of FOL: Atomic Sentences

• Atomic Sentences state facts (logical truth values).
– An atomic sentence is a Predicate symbol, optionally

followed by a parenthesized list of any argument terms
– E.g., Married(Father(Richard), Mother(John))
– An atomic sentence asserts that some relationship (some

predicate) holds among the objects that are its arguments.

• An Atomic Sentence is true in a given model if the
relation referred to by the predicate symbol holds among
the objects (terms) referred to by the arguments.

29

Syntax of FOL: Connectives & Complex Sentences

• Complex Sentences are formed in the same way,
and are formed using the same logical connectives,
as we already know from propositional logic

• The Logical Connectives:

– ⇔ biconditional
– ⇒ implication
– ∧ and
– ∨ or
– ¬ negation

• Semantics for these logical connectives are the same as

we already know from propositional logic.

30

Syntax of FOL: Variables

• Variables range over objects in the world.

• A variable is like a term because it represents an object.

• A variable may be used wherever a term may be used.
– Variables may be arguments to functions and predicates.

• A term with NO variables is called a ground term.

• All variables must be bound by a quantifier, ∀ or ∃

• (A variable not bound by a quantifier is called free.)

– Used by mathematicians, not used in this class

31

Syntax of FOL: Logical Quantifiers

• There are two Logical Quantifiers:
– Universal: ∀ x P(x) means “For all x, P(x).”

• The “upside-down A” reminds you of “ALL.”
– Existential: ∃ x P(x) means “There exists x such that, P(x).”

• The “upside-down E” reminds you of “EXISTS.”

• Syntactic “sugar” --- we really only need one quantifier.
– ∀ x P(x) ≡ ¬∃ x ¬P(x)
– ∃ x P(x) ≡ ¬∀ x ¬P(x)
– You can ALWAYS convert one quantifier to the other.

• RULES: ∀ ≡ ¬∃¬ and ∃ ≡ ¬∀¬

• RULE: To move negation “in” across a quantifier,

change the quantifier to “the other quantifier”
and negate the predicate on “the other side.”

– ¬∀ x P(x) ≡ ∃ x ¬P(x)
– ¬∃ x P(x) ≡ ∀ x ¬P(x)

Universal Quantification ∀

• ∀ means “for all”

• Allows us to make statements about all objects that have certain
properties

• Can now state general rules:

∀ x King(x) => Person(x) “All kings are persons.”

∀ x Person(x) => HasHead(x) “Every person has a head.”

∀ i Integer(i) => Integer(plus(i,1)) “If i is an integer then i+1 is an integer.”

Note that
∀ x King(x) ∧ Person(x) is not correct!
This would imply that all objects x are Kings and are People

∀ x King(x) => Person(x) is the correct way to say this

Note that => is the natural connective to use with ∀ .

Existential Quantification ∃

• ∃ x means “there exists an x such that….” (at least one object x)

• Allows us to make statements about some object without naming it

• Examples:

∃ x King(x) “Some object is a king.”

∃ x Lives_in(John, Castle(x)) “John lives in somebody’s castle.”

∃ i Integer(i) ∧ GreaterThan(i,0) “Some integer is greater than zero.”

Note that ∧ is the natural connective to use with ∃

(And remember that => is the natural connective to use with ∀)

34

Combining Quantifiers --- Order (Scope)

The order of “unlike” quantifiers is important.
∀ x ∃ y Loves(x,y)

– For everyone (“all x”) there is someone (“exists y”) whom they love

∃ y ∀ x Loves(x,y)
 - there is someone (“exists y”) whom everyone loves (“all x”)

Clearer with parentheses: ∃ y (∀ x Loves(x,y))

The order of “like” quantifiers does not matter.
 ∀x ∀y P(x, y) ≡ ∀y ∀x P(x, y)
 ∃x ∃y P(x, y) ≡ ∃y ∃x P(x, y)

35

De Morgan’s Law for Quantifiers

()
()
()
()

x P x P
x P x P

x P x P
x P x P

∀ ≡¬∃ ¬

∃ ≡¬∀ ¬

¬∀ ≡∃ ¬

¬∃ ≡∀ ¬

()
()

()
()

P Q P Q
P Q P Q

P Q P Q
P Q P Q

∧ ≡ ¬ ¬ ∨ ¬

∨ ≡ ¬ ¬ ∧ ¬

¬ ∧ ≡ ¬ ∨ ¬

¬ ∨ ≡ ¬ ∧ ¬

De Morgan’s Rule Generalized De Morgan’s Rule

Rule is simple: if you bring a negation inside a disjunction or a conjunction,
always switch between them (or and, and  or).

36

37

More fun with sentences

• “All persons are mortal.”
• [Use: Person(x), Mortal (x)]

• ∀x Person(x) ⇒ Mortal(x)
• ∀x ¬Person(x) ˅ Mortal(x)

• Common Mistakes:
• ∀x Person(x) ∧ Mortal(x)

• Note that => is the natural connective to use with ∀ .

38

More fun with sentences

• “Fifi has a sister who is a cat.”
• [Use: Sister(Fifi, x), Cat(x)]
•
• ∃x Sister(Fifi, x) ∧ Cat(x)

• Common Mistakes:
• ∃x Sister(Fifi, x) ⇒ Cat(x)

• Note that ∧ is the natural connective to use with ∃

39

More fun with sentences

• “For every food, there is a person who eats that food.”
• [Use: Food(x), Person(y), Eats(y, x)]

• All are correct:
• ∀x ∃y Food(x) ⇒ [Person(y) ∧ Eats(y, x)]
• ∀x Food(x) ⇒ ∃y [Person(y) ∧ Eats(y, x)]
• ∀x ∃y ¬Food(x) ˅ [Person(y) ∧ Eats(y, x)]
• ∀x ∃y [¬Food(x) ˅ Person(y)] ∧ [¬ Food(x) ˅ Eats(y, x)]
• ∀x ∃y [Food(x) ⇒ Person(y)] ∧ [Food(x) ⇒ Eats(y, x)]

• Common Mistakes:
• ∀x ∃y [Food(x) ∧ Person(y)] ⇒ Eats(y, x)
• ∀x ∃y Food(x) ∧ Person(y) ∧ Eats(y, x)

40

More fun with sentences

• “Every person eats every food.”
• [Use: Person (x), Food (y), Eats(x, y)]
•
• ∀x ∀y [Person(x) ∧ Food(y)] ⇒ Eats(x, y)
• ∀x ∀y ¬Person(x) ˅ ¬Food(y) ˅ Eats(x, y)
• ∀x ∀y Person(x) ⇒ [Food(y) ⇒ Eats(x, y)]
• ∀x ∀y Person(x) ⇒ [¬Food(y) ˅ Eats(x, y)]
• ∀x ∀y ¬Person(x) ˅ [Food(y) ⇒ Eats(x, y)]
• Common Mistakes:
• ∀x ∀y Person(x) ⇒ [Food(y) ∧ Eats(x, y)]
• ∀x ∀y Person(x) ∧ Food(y) ∧ Eats(x, y)

41

More fun with sentences

• “All greedy kings are evil.”
• [Use: King(x), Greedy(x), Evil(x)]
•
• ∀x [Greedy(x) ∧ King(x)] ⇒ Evil(x)
• ∀x ¬Greedy(x) ˅ ¬King(x) ˅ Evil(x)
• ∀x Greedy(x) ⇒ [King(x) ⇒ Evil(x)]
• Common Mistakes:
• ∀x Greedy(x) ∧ King(x) ∧ Evil(x)

42

More fun with sentences

• “Everyone has a favorite food.”
• [Use: Person(x), Food(y), Favorite(y, x)]
•
• ∀x ∃y Person(x) ⇒ [Food(y) ∧ Favorite(y, x)]
• ∀x Person(x) ⇒ ∃y [Food(y) ∧ Favorite(y, x)]
• ∀x ∃y ¬Person(x) ˅ [Food(y) ∧ Favorite(y, x)]
• ∀x ∃y [¬Person(x) ˅ Food(y)] ∧ [¬Person(x) ˅

Favorite(y, x)]
• ∀x ∃y [Person(x) ⇒ Food(y)] ∧ [Person(x) ⇒ Favorite(y,

x)]
• Common Mistakes:
• ∀x ∃y [Person(x) ∧ Food(y)] ⇒ Favorite(y, x)
• ∀x ∃y Person(x) ∧ Food(y) ∧ Favorite(y, x)

43

Semantics: Interpretation

• An interpretation of a sentence (wff) is an assignment that
maps
– Object constant symbols to objects in the world,
– n-ary function symbols to n-ary functions in the world,
– n-ary relation symbols to n-ary relations in the world

• Given an interpretation, an atomic sentence has the value
“true” if it denotes a relation that holds for those individuals
denoted in the terms. Otherwise it has the value “false.”
– Example: Kinship world:

• Symbols = Ann, Bill, Sue, Married, Parent, Child, Sibling, …
– World consists of individuals in relations:

• Married(Ann,Bill) is false, Parent(Bill,Sue) is true, …

• Your job, as a Knowledge Engineer, is to construct KB so it is
true *exactly* for your world and intended interpretation.

44

Semantics: Models and Definitions

• An interpretation and possible world satisfies a wff
(sentence) if the wff has the value “true” under that
interpretation in that possible world.

• A domain and an interpretation that satisfies a wff is a model
of that wff

• Any wff that has the value “true” in all possible worlds and
under all interpretations is valid.

• Any wff that does not have a model under any interpretation
is inconsistent or unsatisfiable.

• Any wff that is true in at least one possible world under at
least one interpretation is satisfiable.

• If a wff w has a value true under all the models of a set of
sentences KB then KB logically entails w.

45

Conversion to CNF

• Everyone who loves all animals is loved by
someone:

∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)]

1. Eliminate biconditionals and implications

∀x [¬∀y ¬Animal(y) ∨ Loves(x,y)] ∨ [∃y Loves(y,x)]

2. Move ¬ inwards:
 ¬∀x p ≡ ∃x ¬p, ¬ ∃x p ≡ ∀x ¬p

∀x [∃y ¬(¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)]
∀x [∃y ¬¬Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]
∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃y Loves(y,x)]

46

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different
one

∀x [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the

enclosing universally quantified variables:

 ∀x [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

5. Drop universal quantifiers:

 [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

6. Distribute ∨ over ∧ :
 [Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

47

Unification

• Recall: Subst(θ, p) = result of substituting θ into sentence p

• Unify algorithm: takes 2 sentences p and q and returns a
unifier if one exists

 Unify(p,q) = θ where Subst(θ, p) = Subst(θ, q)

• Example:
 p = Knows(John,x)
 q = Knows(John, Jane)

 Unify(p,q) = {x/Jane}

48

Unification examples

• simple example: query = Knows(John,x), i.e., who does John know?

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}
Knows(John,x) Knows(x,OJ) {fail}

• Last unification fails: only because x can’t take values John and OJ at

the same time
– But we know that if John knows x, and everyone (x) knows OJ, we should be

able to infer that John knows OJ

• Problem is due to use of same variable x in both sentences

• Simple solution: Standardizing apart eliminates overlap of variables,
e.g., Knows(z,OJ)

49

Unification

• To unify Knows(John,x) and Knows(y,z),

 θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

• The first unifier is more general than the second.

• There is a single most general unifier (MGU) that is unique up

to renaming of variables.

MGU = { y/John, x/z }

• General algorithm in Figure 9.1 in the text

50

Unification Algorithm

51

Knowledge engineering in FOL

1. Identify the task

2. Assemble the relevant knowledge

3. Decide on a vocabulary of predicates, functions, and constants

4. Encode general knowledge about the domain

5. Encode a description of the specific problem instance

6. Pose queries to the inference procedure and get answers

7. Debug the knowledge base

52

The electronic circuits domain

1. Identify the task
– Does the circuit actually add properly?

2. Assemble the relevant knowledge

– Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
–
– Irrelevant: size, shape, color, cost of gates
–

3. Decide on a vocabulary

– Alternatives:
–

Type(X1) = XOR (function)
Type(X1, XOR) (binary predicate)
XOR(X1)
 (unary predicate)

53

The electronic circuits domain

4. Encode general knowledge of the domain
– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)

– ∀t Signal(t) = 1 ∨ Signal(t) = 0

– 1 ≠ 0

– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)

– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1

– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0

– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔ Signal(In(1,g)) ≠

Signal(In(2,g))

– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g))

54

The electronic circuits domain

5. Encode the specific problem instance
Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

55

The electronic circuits domain

6. Pose queries to the inference procedure
What are the possible sets of values of all the terminals for the adder

circuit?

 ∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧ Signal(In(3,C1)) =
i3 ∧ Signal(Out(1,C1)) = o1 ∧ Signal(Out(2,C1)) = o2

7. Debug the knowledge base
May have omitted assertions like 1 ≠ 0

56

CS-271P Final Review

• Propositional Logic
• (7.1-7.5)

• First-Order Logic, Knowledge Representation
• (8.1-8.5, 9.1-9.2)

• Constraint Satisfaction Problems
• (6.1-6.4, except 6.3)

• Machine Learning
• (18.1-18.4)

• Questions on any topic
• Pre-mid-term material if time and class interest
• Please review your quizzes, mid-term, & old tests

• At least one question from a prior quiz or test will appear on the
Final Exam (and all other tests)

Review Constraint Satisfaction
Chapter 6.1-6.4, except 6.3.3

• What is a CSP

• Backtracking for CSP

• Local search for CSPs

Constraint Satisfaction Problems
• What is a CSP?

– Finite set of variables X1, X2, …, Xn

– Nonempty domain of possible values for each variable

D1, D2, …, Dn

– Finite set of constraints C1, C2, …, Cm

• Each constraint Ci limits the values that variables can take,
• e.g., X1 ≠ X2

– Each constraint Ci is a pair <scope, relation>
• Scope = Tuple of variables that participate in the constraint.
• Relation = List of allowed combinations of variable values.
 May be an explicit list of allowed combinations.
 May be an abstract relation allowing membership testing and listing.

• CSP benefits
– Standard representation pattern
– Generic goal and successor functions
– Generic heuristics (no domain specific expertise).

CSPs --- what is a solution?

• A state is an assignment of values to some or all variables.
– An assignment is complete when every variable has a value.
– An assignment is partial when some variables have no values.

• Consistent assignment

– assignment does not violate the constraints

• A solution to a CSP is a complete and consistent assignment.

• Some CSPs require a solution that maximizes an objective function.

CSP example: map coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di={red,green,blue}
• Constraints:adjacent regions must have

different colors.
• E.g. WA ≠ NT

CSP example: map coloring

• Solutions are assignments satisfying all
constraints, e.g.

 {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,T=green}

Constraint graphs

• Constraint graph:

• nodes are variables

• arcs are binary constraints

• Graph can be used to simplify search
 e.g. Tasmania is an independent subproblem

 (will return to graph structure later)

Backtracking example

Minimum remaining values
(MRV)

 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

• A.k.a. most constrained variable heuristic

• Heuristic Rule: choose variable with the fewest legal moves

– e.g., will immediately detect failure if X has no legal values

Degree heuristic for the initial
variable

• Heuristic Rule: select variable that is involved in the largest number of constraints on
other unassigned variables.

• Degree heuristic can be useful as a tie breaker.

• In what order should a variable’s values be tried?

Least constraining value for
value-ordering

• Least constraining value heuristic

• Heuristic Rule: given a variable choose the least constraining value
– leaves the maximum flexibility for subsequent variable assignments

Forward checking

• Can we detect inevitable failure early?
– And avoid it later?

• Forward checking idea: keep track of remaining legal values for unassigned variables.

• When a variable is assigned a value, update all neighbors in the constraint graph.
• Forward checking stops after one step and does not go beyond immediate neighbors.

• Terminate search when any variable has no legal values.

Forward checking

• Assign {WA=red}

• Effects on other variables connected by constraints to WA
– NT can no longer be red
– SA can no longer be red

Forward checking

• Assign {Q=green}

• Effects on other variables connected by constraints with WA
– NT can no longer be green
– NSW can no longer be green
– SA can no longer be green

• MRV heuristic would automatically select NT or SA next

Arc consistency

• An Arc X → Y is consistent if
 for every value x of X there is some value y consistent with x
 (note that this is a directed property)

• Put all arcs X → Y onto a queue (X → Y and Y → X both go on, separately)
• Pop one arc X → Y and remove any inconsistent values from X
• If any change in X, then put all arcs Z → X back on queue, where Z is a neighbor of X
• Continue until queue is empty

Arc consistency

• X → Y is consistent if
 for every value x of X there is some value y consistent with x

• NSW → SA is consistent if
 NSW=red and SA=blue
 NSW=blue and SA=???

Arc consistency

• Can enforce arc-consistency:
 Arc can be made consistent by removing blue from NSW

• Continue to propagate constraints….

– Check V → NSW
– Not consistent for V = red
– Remove red from V

Arc consistency

• Continue to propagate constraints….

• SA → NT is not consistent

– and cannot be made consistent

• Arc consistency detects failure earlier than FC

Local search for CSPs
• Use complete-state representation

– Initial state = all variables assigned values
– Successor states = change 1 (or more) values

• For CSPs

– allow states with unsatisfied constraints (unlike backtracking)
– operators reassign variable values
– hill-climbing with n-queens is an example

• Variable selection: randomly select any conflicted variable

• Value selection: min-conflicts heuristic

– Select new value that results in a minimum number of conflicts with the other variables

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

76

CS-271P Final Review

• Propositional Logic
• (7.1-7.5)

• First-Order Logic, Knowledge Representation
• (8.1-8.5, 9.1-9.2)

• Constraint Satisfaction Problems
• (6.1-6.4, except 6.3)

• Machine Learning
• (18.1-18.4)

• Questions on any topic
• Pre-mid-term material if time and class interest
• Please review your quizzes, mid-term, & old tests

• At least one question from a prior quiz or test will appear on the
Final Exam (and all other tests)

77

The importance of a good representation

• Properties of a good representation:

• Reveals important features
• Hides irrelevant detail
• Exposes useful constraints
• Makes frequent operations easy-to-do
• Supports local inferences from local features

• Called the “soda straw” principle or “locality” principle
• Inference from features “through a soda straw”

• Rapidly or efficiently computable
• It’s nice to be fast

78

Reveals important features / Hides irrelevant detail

• “You can’t learn what you can’t represent.” --- G. Sussman

• In search: A man is traveling to market with a fox, a goose,

and a bag of oats. He comes to a river. The only way across
the river is a boat that can hold the man and exactly one of the
fox, goose or bag of oats. The fox will eat the goose if left alone
with it, and the goose will eat the oats if left alone with it.

• A good representation makes this problem easy:

1110
0010
1010
1111
0001
0101

0000 1101

1011

0100 1110

0010 1010 1111

0001

0101

79

Terminology

• Attributes
– Also known as features, variables, independent variables,

covariates

• Target Variable
– Also known as goal predicate, dependent variable, …

• Classification
– Also known as discrimination, supervised classification, …

• Error function

– Objective function, loss function, …

80

Inductive learning

• Let x represent the input vector of attributes

• Let f(x) represent the value of the target variable for x
– The implicit mapping from x to f(x) is unknown to us
– We just have training data pairs, D = {x, f(x)} available

• We want to learn a mapping from x to f, i.e.,
 h(x; θ) is “close” to f(x) for all training data points x

 θ are the parameters of our predictor h(..)

• Examples:

– h(x; θ) = sign(w1x1 + w2x2+ w3)

– hk(x) = (x1 OR x2) AND (x3 OR NOT(x4))

81

Empirical Error Functions

• Empirical error function:
 E(h) = Σx distance[h(x; θ) , f]

e.g., distance = squared error if h and f are real-valued (regression)
 distance = delta-function if h and f are categorical (classification)

Sum is over all training pairs in the training data D

In learning, we get to choose

 1. what class of functions h(..) that we want to learn
 – potentially a huge space! (“hypothesis space”)

 2. what error function/distance to use
 - should be chosen to reflect real “loss” in problem
 - but often chosen for mathematical/algorithmic convenience

82

Decision Tree Representations

• Decision trees are fully expressive
– can represent any Boolean function
– Every path in the tree could represent 1 row in the truth table
– Yields an exponentially large tree

• Truth table is of size 2d, where d is the number of attributes

83

Pseudocode for Decision tree learning

84

Entropy with only 2 outcomes

Consider 2 class problem: p = probability of class 1, 1 – p = probability

of class 2

In binary case, H(p) = - p log p - (1-p) log (1-p)

H(p)

0.5 1 0

1

p

85

Information Gain

• H(p) = entropy of class distribution at a particular node

• H(p | A) = conditional entropy = average entropy of
conditional class distribution, after we have partitioned the
data according to the values in A

• Gain(A) = H(p) – H(p | A)

• Simple rule in decision tree learning
– At each internal node, split on the node with the largest

information gain (or equivalently, with smallest H(p|A))

• Note that by definition, conditional entropy can’t be greater
than the entropy

86

Overfitting and Underfitting

X

Y

87

A Complex Model

X

Y

Y = high-order polynomial in X

88

A Much Simpler Model

X

Y

Y = a X + b + noise

89

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range
for Model Complexity

Overfitting Underfitting

90

Training and Validation Data

Full Data Set

Training Data

Validation Data

Idea: train each
model on the
“training data”

and then test
each model’s
accuracy on
the validation data

91

 The k-fold Cross-Validation Method

• Why just choose one particular 90/10 “split” of the data?
– In principle we could do this multiple times

• “k-fold Cross-Validation” (e.g., k=10)
– randomly partition our full data set into k disjoint subsets (each

roughly of size n/k, n = total number of training data points)
•for i = 1:10 (here k = 10)

–train on 90% of data,
–Acc(i) = accuracy on other 10%

•end

•Cross-Validation-Accuracy = 1/k Σi Acc(i)
– choose the method with the highest cross-validation accuracy
– common values for k are 5 and 10
– Can also do “leave-one-out” where k = n

92

Disjoint Validation Data Sets

Full Data Set

Training Data

Validation Data (aka Test Data)

Validation
Data

1st partition 2nd partition

3rd partition 4th partition 5th partition

114

CS-271P Final Review

• Propositional Logic
• (7.1-7.5)

• First-Order Logic, Knowledge Representation
• (8.1-8.5, 9.1-9.2)

• Constraint Satisfaction Problems
• (6.1-6.4, except 6.3)

• Machine Learning
• (18.1-18.4)

• Questions on any topic
• Pre-mid-term material if time and class interest
• Please review your quizzes, mid-term, & old tests

• At least one question from a prior quiz or test will appear on the
Final Exam (and all other tests)

	CS-271P Final Review
	Review Propositional Logic�Chapter 7.1-7.5
	Recap propositional logic: Syntax
	Recap propositional logic: Semantics
	Recap propositional logic:�Truth tables for connectives
	Recap propositional logic:�Logical equivalence and rewrite rules
	Recap propositional logic: Entailment
	Review: Models (and in FOL, Interpretations)
	Review: Wumpus models
	Review: Wumpus models
	Wumpus models
	Review: Schematic for Follows, Entails, and Derives
	Schematic Example: Follows, Entails, and Derives
	Recap propositional logic: Validity and satisfiability
	Inference Procedures
	Resolution = Efficient Implication
	Resolution Examples
	Only Resolve ONE Literal Pair!�If more than one pair, result always = TRUE.�Useless!! Always simplifies to TRUE!!
	Resolution Algorithm
	Resolution example
	Detailed Resolution Proof Example
	Propositional Logic --- Summary
	CS-271P Final Review
	Knowledge Representation using First-Order Logic
	Review: Syntax of FOL: Basic elements
	Syntax of FOL: Basic syntax elements are symbols
	Syntax of FOL: Terms
	Syntax of FOL: Atomic Sentences
	Syntax of FOL: Connectives & Complex Sentences
	Syntax of FOL: Variables
	Syntax of FOL: Logical Quantifiers
	Universal Quantification 
	Existential Quantification 
	Combining Quantifiers --- Order (Scope)
	De Morgan’s Law for Quantifiers
	Slide Number 36
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	More fun with sentences
	Semantics: Interpretation
	Semantics: Models and Definitions
	Conversion to CNF
	Conversion to CNF contd.
	Unification
	Unification examples
	Unification
	Unification Algorithm
	Knowledge engineering in FOL
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	The electronic circuits domain
	CS-271P Final Review
	Review Constraint Satisfaction�Chapter 6.1-6.4, except 6.3.3
	Constraint Satisfaction Problems
	CSPs --- what is a solution?
	CSP example: map coloring
	CSP example: map coloring
	Constraint graphs
	Backtracking example
	Minimum remaining values (MRV)
	Degree heuristic for the initial variable
	Least constraining value for value-ordering
	Forward checking
	Forward checking
	Forward checking
	Arc consistency
	Arc consistency
	Arc consistency
	Arc consistency
	Local search for CSPs
	Min-conflicts example 1
	CS-271P Final Review
	The importance of a good representation
	Slide Number 78
	Terminology
	Inductive learning
	Slide Number 81
	Decision Tree Representations
	Pseudocode for Decision tree learning
	Slide Number 84
	Information Gain
	Slide Number 86
	Slide Number 87
	Slide Number 88
	How Overfitting affects Prediction
	Slide Number 90
	Slide Number 91
	Slide Number 92
	CS-271P Final Review

