Text Clustering

Sameer Singh and Conal Sathi

BANA 290: ADVANCED DATA ANALYTICS
MACHINE LEARNING FOR TEXT
SPRING 2018

May 8, 2018

Upcoming...

Homework

- Homework 2 has been out
- Due this week: May 11, 2017
- Not much activity on Piazza

Project

- Instructions for proposal are out
- Due: May 15th

Outline

Unsupervised Machine Learning

K-Means Clustering

DBSCAN Algorithm

Hierarchical Clustering

Outline

Unsupervised Machine Learning

K-Means Clustering

DBSCAN Algorithm

Hierarchical Clustering

Unsupervised learning

Supervised learning

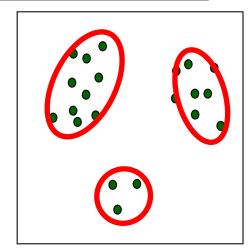
Predict target value ("y") given features ("x")

Unsupervised learning

- Understand patterns of data (just "x")
- Useful for many reasons
 - Data mining ("explain")
 - Missing data values ("impute")
 - Representation (feature generation or selection)

One example: clustering

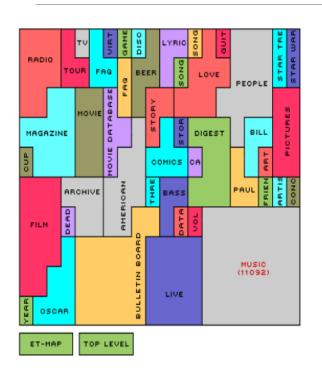
Describe data by discrete "groups" with some characteristics



Text Clustering

- Whole corpus analysis/navigation
 - Better user interface
 - partition it into groups of related docs
- For improving recall in search applications
 - Better search results
- For better navigation of search results
- For speeding up vector space retrieval
 - Faster search

Clustering for Corpus



A Map of Yahoo!, Mappa.Mundi Magazine, February 2000.

Map of the Market with Headlines Smartmoney [2]

Clustering for Search

text analytics Search

Results 1-20 of about 891,953 | Details

Sources Sites Time Topics

Top 354 Results

- + Google-analytics.com (90)
- + Mining (23)
- + Marketing (42)
- + Customer (29)
- + Image (29)
- + Business intelligence (17)
- + Visualization (11)
- + Text Analytics API (5)
- + University (10)
- + Introduction to Text Analysis (5)
- + Cookies, Google Analytics (13)
- + Reviews (6)
- + Science (8)
- + Surveys (10)
- Field (4)
- + Real Estate (7)
- Book, E-Books (5)
- Fraud (4)

Text Analytics API | Microsoft Azure new window preview

Turn unstructured text into meaningful insights with the Text Analytics API from Microsoft Azure. Extract information with sentiment analysis and more.

https://azure.microsoft.com/.../cognitive-services/text-analytics - - Yippy Index V

Text mining - Wikipedia new window preview

Text mining, also referred to as text data mining, roughly equivalent to text analytics, is the process of deriving highquality information from text.

https://en.wikipedia.org/wiki/Text_analytics - - Yippy Index V

Text Analytics API overview (Microsoft Cognitive Services ... new window preview

Text Analytics API in Azure Cognitive Services for sentiment analysis, key phrase extraction, and language detection.

https://docs.microsoft.com/.../Text-Analytics/overview - - Yippy Index V

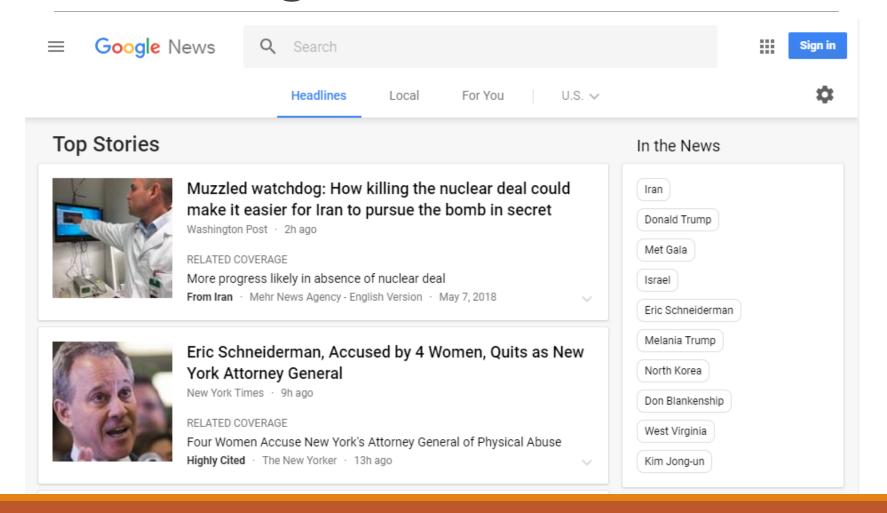
Text Analytics | What is Text Analytics? new window preview

Clarabridge pioneered text analytics and sentiment analysis and our text mining software remains a core component of all CEM services.

https://www.clarabridge.com/text-analytics - - Yippy Index V

What is Text Analytics 2 - Editor Review User Reviews new window preview

Clustering News

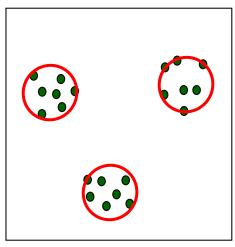


Clustering

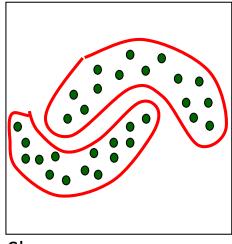
Clustering describes data by "groups"

The meaning of "groups" may vary by data!

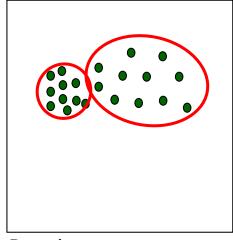
Examples



Location



Shape

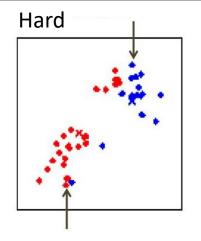


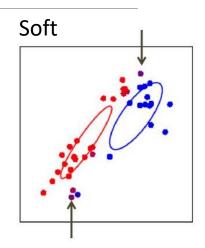
Density

Types of Clustering

Hard vs Soft

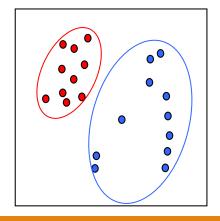
- Hard: One cluster per point
- Soft: Weighted membership to all

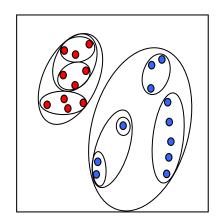




Flat vs Hierarchical

- Flat: Fixed number of clusters
- Hierarchical: Tree of clusters





What do I need for Clustering?

What's a point? A vector!

- Bag of words, Ngrams
- TFIDF weighted, sometimes features
- ... next time, we'll learn vectors

Distance between vectors

Euclidean/L2

Cosine Distance

$$\sum_{k} |x_k - y_k|$$

$$1 - \frac{\sum_{k} x_{k} y_{k}}{\parallel x \parallel \parallel y \parallel}$$

Algorithm

- Kmeans, DBSCAN
- Hierarchical Clustering
- ... many others, active area of research

In-Class Activity 1

Outline

Unsupervised Machine Learning

K-Means Clustering

DBSCAN Algorithm

Hierarchical Clustering

K-Means Clustering

A simple clustering algorithm

Iterate between

- Updating the assignment of data to clusters
- Updating the cluster's summarization

μ₁ χ μ₂ χ μ₂ χ μ₃ φ

Notation:

Data example i has features x_i

Assume K clusters

Each cluster c "described" by a center μ_c

Each cluster will "claim" a set of nearby points

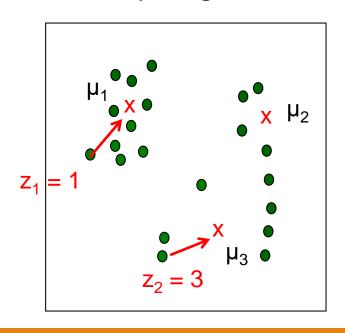
Hard and Flat

K-Means Clustering

A simple clustering algorithm

Iterate between

- Updating the assignment of data to clusters
- Updating the cluster's summarization



Notation:

- Data example i has features x_i
- Assume K clusters
- Each cluster c "described" by a center μ_c
- Each cluster will "claim" a set of nearby points
- "Assignment" of ith example: z_i = 1..K

K-Means Clustering

Iterate until convergence:

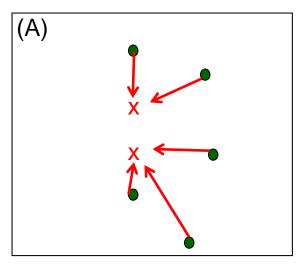
• (A) For each datum, find the closest cluster

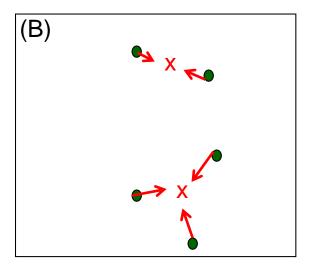
$$z_i = \arg\min_{c} \|x_i - \mu_c\|^2 \qquad \forall c$$

• (B) Set each cluster to the mean of all assigned data:

$$\forall c, \qquad \mu_c = \frac{1}{m_c} \sum_{i \in S_c} x_i$$

$$\forall c, \qquad \mu_c = \frac{1}{m_c} \sum_{i \in S} x_i \qquad S_c = \{i : z_i = c\}, \ m_c = |S_c|$$





Demo Time!

http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Choosing Number of Clusters

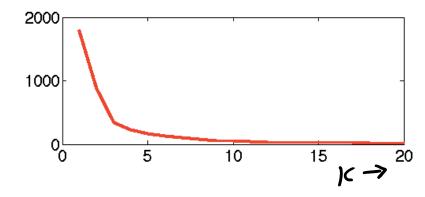
With cost function

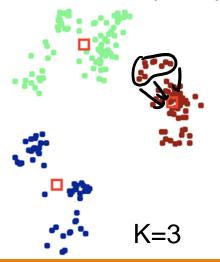
$$C(\underline{z},\underline{\mu}) = \sum_{i} \|x_i - \mu_{z_i}\|^2$$

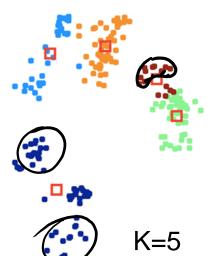
what is the optimal value of k?

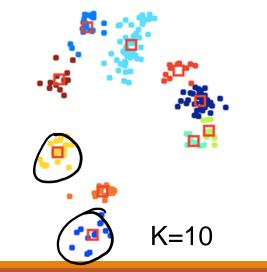
Cost always decreases with k!

A model complexity issue...









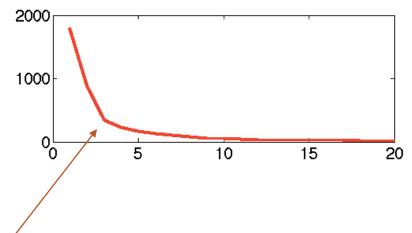
Choosing Number of clusters

With cost function
$$C(\underline{z},\underline{\mu}) = \sum_i \|x_i - \mu_{z_i}\|^2$$

what is the optimal value of k?

Cost always decreases with k!

A model complexity issue...



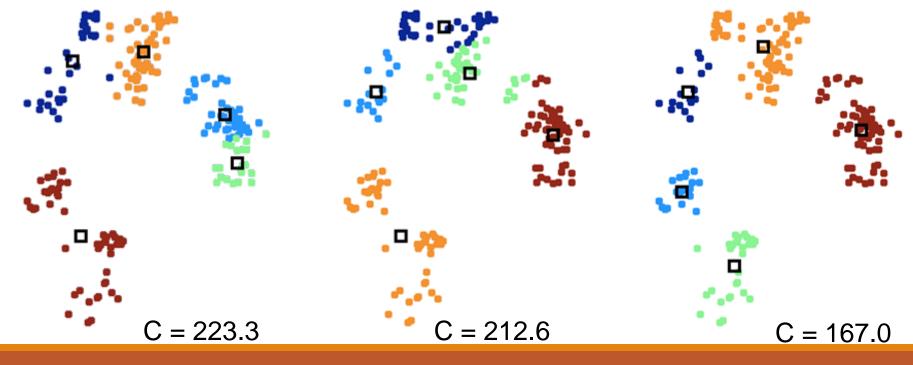
Pick the point of diminishing returns i.e. the "elbow"

Initialization

Multiple local optima, depending on initialization

Try different (randomized) initializations

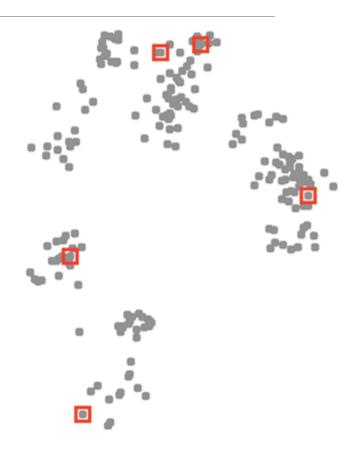
Can use cost C to decide which we prefer



Initialization methods

Random

- Usually, choose random data index
- Ensures centers are near some data
- Issue: may choose nearby points



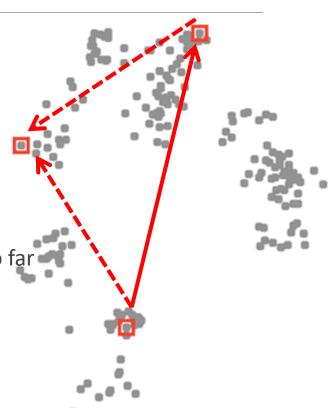
Initialization methods

Random

- Usually, choose random data index
- Ensures centers are near some data
- Issue: may choose nearby points

Distance-based

- Start with one random data point
- Find the point farthest from the clusters chosen so far
- Issue: may choose outliers



Initialization methods

Random

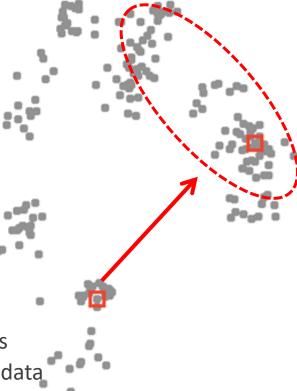
- Usually, choose random data index
- Ensures centers are near some data
- Issue: may choose nearby points

Distance-based

- Start with one random data point
- Issue: may choose outliers

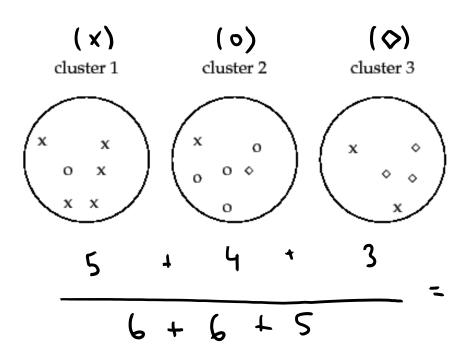
Random + distance ("k-means++")

- Choose next points "far but randomly"
- $p(x) \propto squared distance from x to current centers$
- Likely to put a cluster far away, in a region with lots of data

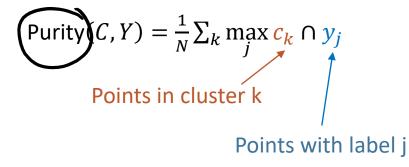


With Labels: Is Clustering Good?

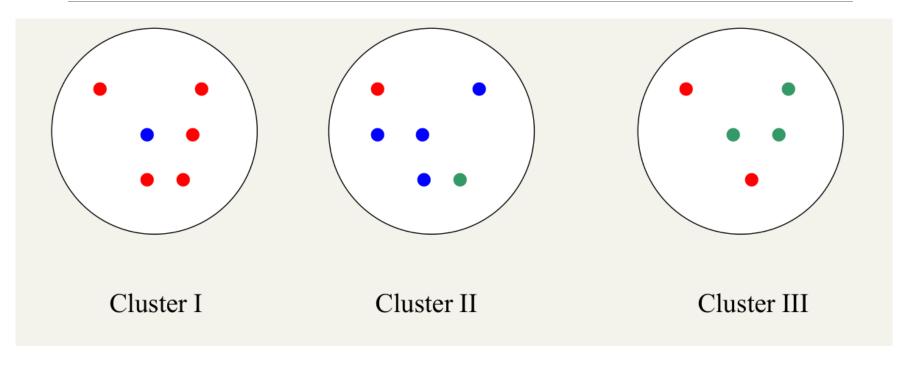
What if we also have labeled data?



- For each cluster, get majority label
- Count points in that cluster that have that label
- Add them up, divide by total points



Another Example



Summary

K-Means clustering

Clusters described as locations ("centers") in feature space

Procedure

- Initialize cluster centers
- Iterate: assign each data point to its closest cluster center
- : move cluster centers to minimize mean squared error

Properties

- Always converges
- initialization important

Choosing the # of clusters, K

The "elbow" method

Outline

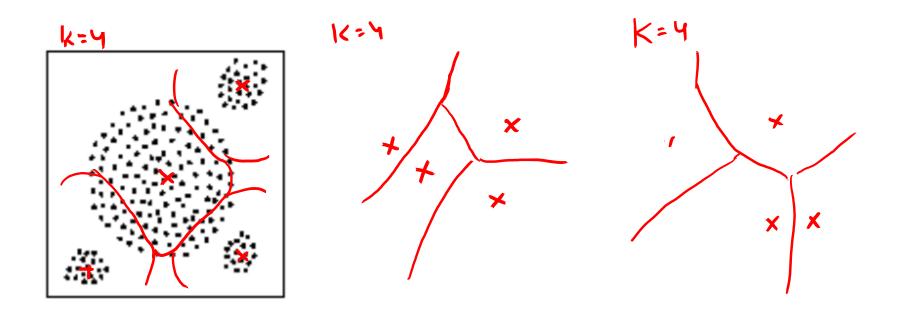
Unsupervised Machine Learning

K-Means Clustering

DBSCAN Algorithm

Hierarchical Clustering

Does K-Means always work?



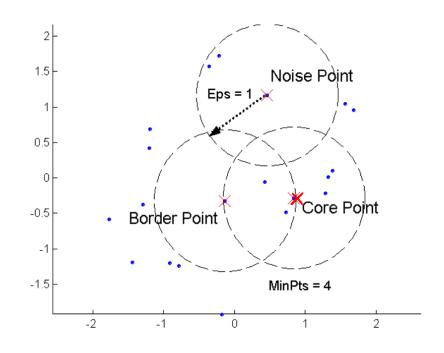
DBSCAN

Radius, eps

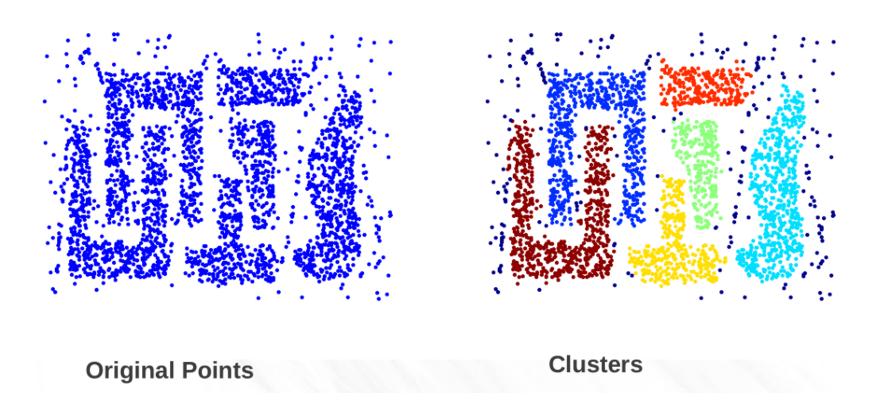
Min samples

No need for number of clusters

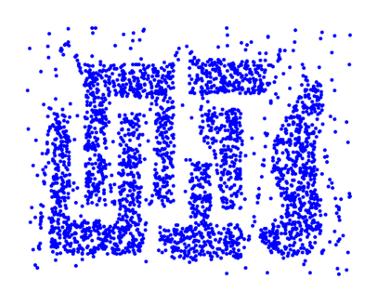
- Three types of points
- Core points: that have >min_samples neighbors in radius eps
 - These are "interior" points
- Border points: <min_samples neighbors (in radius eps), but has a core point
 - Defines the edges of the clusters
- **Noise points:** Any other points
 - These are outliers to the clusters

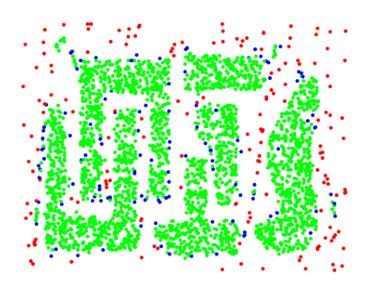


DBSCAN Example: Ideal Eps



DBSCAN Example: Eps too big





Original Points

Point types: core, border and noise

In-Class Activity 2

Outline

Unsupervised Machine Learning

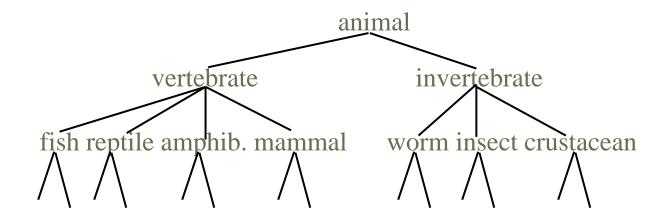
K-Means Clustering

DBSCAN Algorithm

Hierarchical Clustering

Hierarchical Clustering

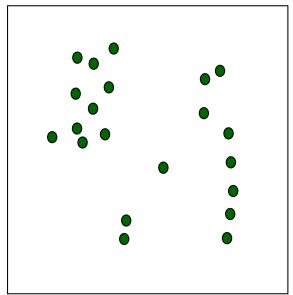
Build a tree-based hierarchical taxonomy (dendrogram) from a set of documents.



Hierarchical Agglomerative Clustering

Initially, every datum is a cluster

Data:

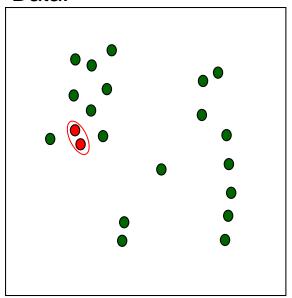


- A simple clustering algorithm
- Define a distance between clusters
- Initialize: every example is a cluster
- Iterate:
 - Compute distances between all clusters
 - Merge two closest clusters
- Save both clustering and sequence of cluster operations
- Result: "Dendrogram"

Iteration 1

Builds up a sequence of clusters ("hierarchical")

Data:



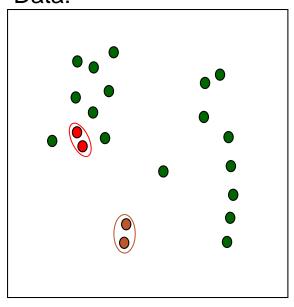
Dendrogram:

Height of the join indicates dissimilarity

Iteration 2

Builds up a sequence of clusters ("hierarchical")

Data:



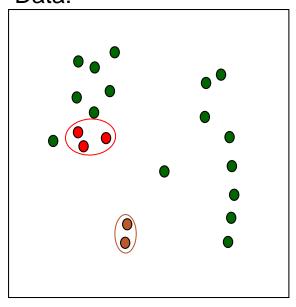
Dendrogram:

Height of the join indicates dissimilarity

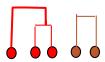
Iteration 3

Builds up a sequence of clusters ("hierarchical")

Data:



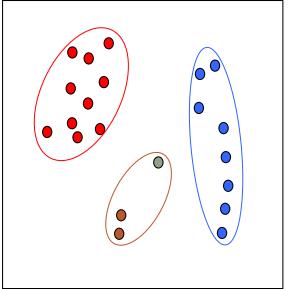
Dendrogram:



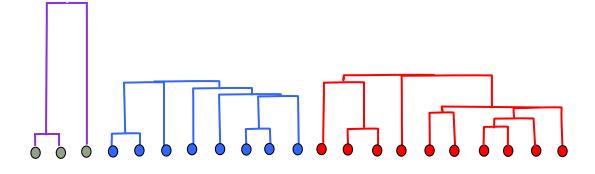
Height of the join indicates dissimilarity

Iteration m-3

Builds up a sequence of clusters ("hierarchical")



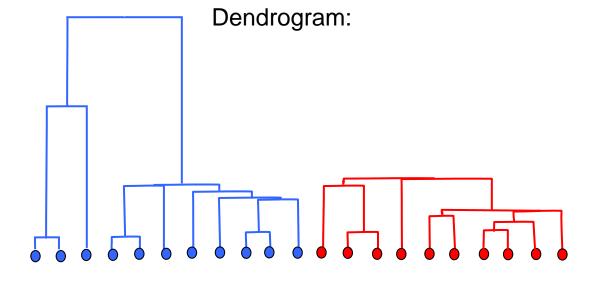
Dendrogram:



Iteration m-2

Builds up a sequence of clusters ("hierarchical")

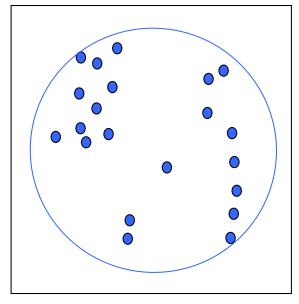
Data:

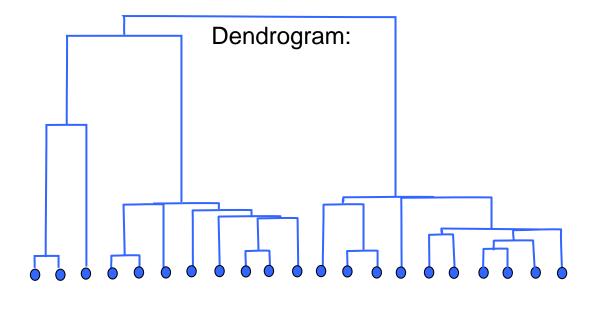


Iteration m-1

Builds up a sequence of clusters ("hierarchical")

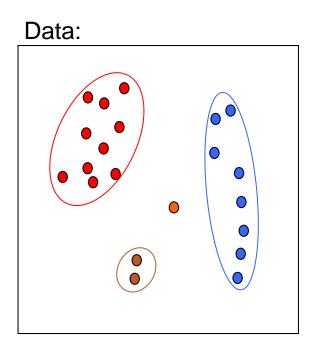
Data:

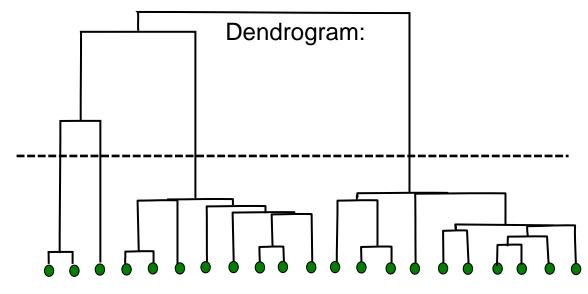




From dendrogram to clusters

Given the sequence, can select a number of clusters or a dissimilarity threshold:





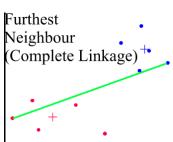
Cluster distances

$$D_{\min}(C_i, C_j) = \min_{x \in C_i, \ y \in C_j} ||x - y||^2$$

Nearest Neighbour (Single Linkage)

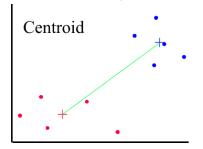
produces minimal spanning tree.

$$D_{\max}(C_i, C_j) = \max_{x \in C_i, y \in C_j} ||x - y||^2 - \dots$$

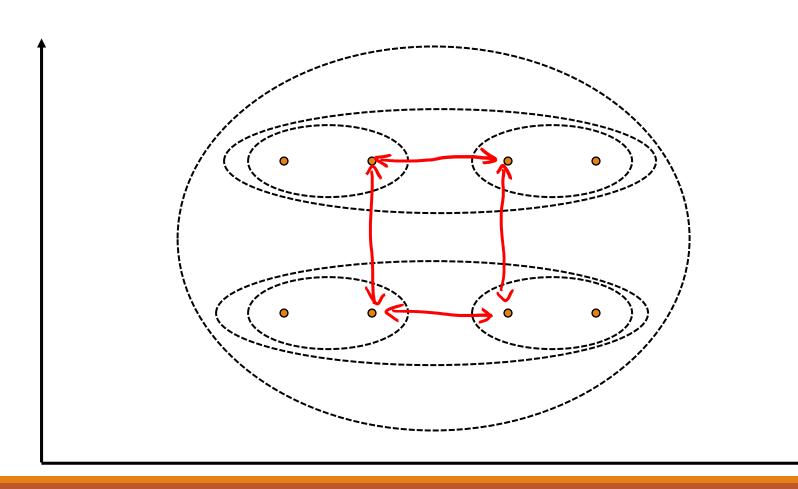


avoids elongated clusters.

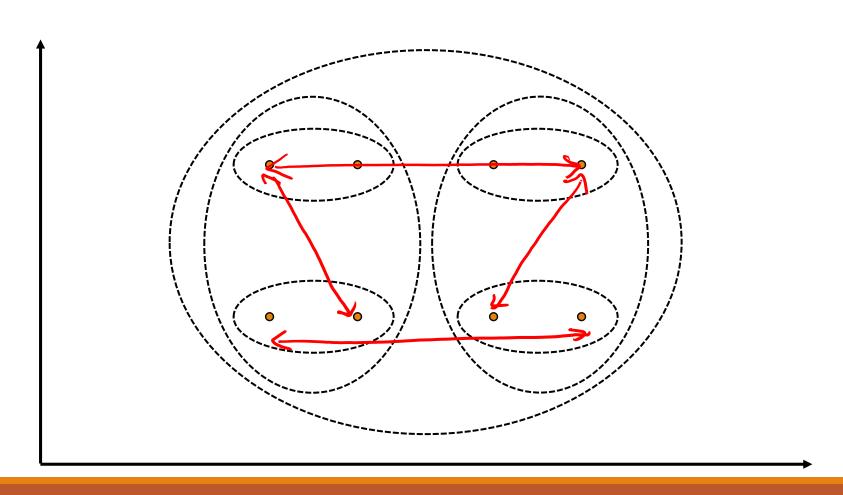
$$D_{\text{means}}(C_i, C_j) = \|\mu_i - \mu_j\|^2$$



Single Link Example



Complete Link Example



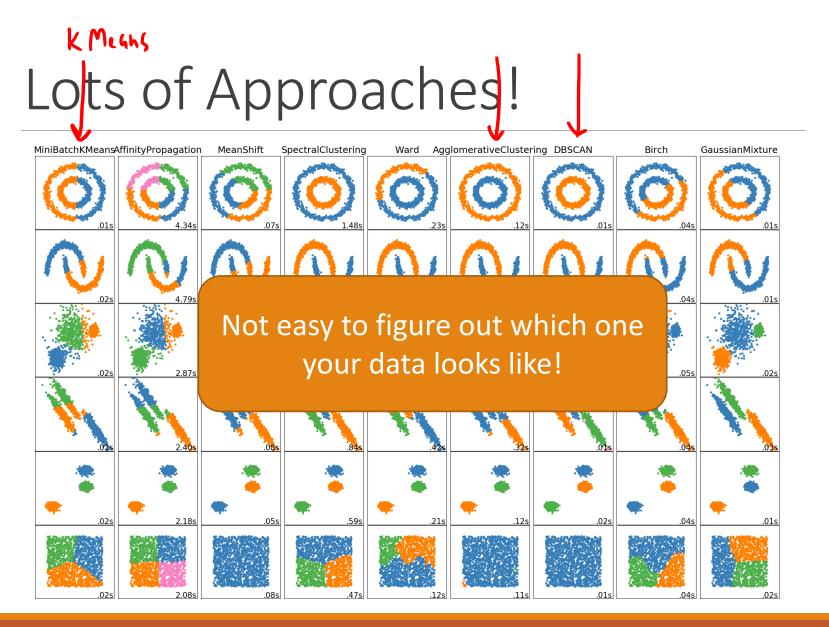
Summary

Agglomerative clustering

- Choose a cluster distance / dissimilarity scoring method
- Successively merge closest pair of clusters
- "Dendrogram" shows sequence of merges & distances

Agglomerative clusters depend critically on dissimilarity

Choice determines characteristics of "found" clusters



In-Class Activity 3