Embeddings

Sameer Singh and Conal Sathi

BANA 290: ADVANCED DATA ANALYTICS
MACHINE LEARNING FOR TEXT
SPRING 2018
May 15, 2018

Upcoming

- Homework 3 will be out this week

Homework

- Due in ~2 weeks: May 29, 2017
- Focused on clustering

Project

- Instructions for proposal are out
- Due tonight: May $15^{\text {th }}$
- Progress presentations in week 10 (~3 weeks)

Outline

Vector Space Models

Latent Semantic Analysis

Word Embeddings

Outline

Vector Space Models

Latent Semantic Analysis

Word Embeddings

Document Vectors

Vector Space Models!

Supervised Learning

- As features in classification
- Labels propagate along similar documents

Unsupervised Learning

- As distance in clustering

TF-IDF Ngrams etc.

- Defined by similar documents

Term-Document Matrix

Local and Global Weighting

Local Weighting

- Binary:
- Term Freq:
- Log:

Global Weighting

- Binary:
- Normal:
- IDF:

Example: Documents

c1: Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user perceived response time to error measurement
m 1 : The generation of random, binary, ordered trees
m 2 : The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering m4: Graph minors: A survey

Document Similarity

A survey of user opinion of computer system response time

Relation of user perceived response time to error measurement

The generation of random, binary, ordered trees

Example

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Example: Word-Doc Matrix

Problem with Sparse Matrices

c2: A survey of user opinion of computer system response time
m4: Graph minors: A survey
c1: Human machine interface
for $A B C$ computer applications

Example

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	$r($ human.user) $=-.38$	
time	0	1	0	0	1	0	0	$r($ human.minors) $=-.29$	
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

The Problem

Two problems that arise when using the vector space model:
Synonymy:

- many ways to refer to the same object, e.g. car and automobile
- leads to poor recall

Polysemy:

- most words have more than one distinct meaning, e.g. model, python, chip
- leads to poor precision

The Problem

Example: Distance Matrix

Going from Sparse to Dense

Outline

Vector Space Models

Latent Semantic Analysis

Word Embeddings

Latent Semantic Analysis (LSA)

Doc j

Term-Document Matrix

。"Word i appears" = row i

- "in document j" = column j

Huge matrix (mostly zeros)

- Treat zeros as if word is not relevant?

PCA/SVD on this matrix provides a new representation

- Latent = "hidden"
- Consider which other words "could have appeared"
- Semantic = "topics"
- Fuzzy search ("concept" instead of "word" matching)

Singular Value Decomp (SVD)

Latent Semantic Analysis (LSA)

Example: Term-Doc Matrix

Example: Decomposition

New Document Vectors

Example: Distance Matrix

Example: Reconstruction

In-Class Activity 1

Outline

Vector Space Models

Latent Semantic Analysis

Word Embeddings

Let's look at words

A bottle of tezguino is on the table.
Everybody likes tezguino.
Tezguino makes you drunk. We make tezguino out of corn.

What does tezguino mean?
Loud, motor oil, tortillas, choices, wine
(Firth, 1957)

Term-Context Matrix

C1 \quad C2 \quad C3 \quad C4
tezguino
C1: A bottle of is on the table.
loud C2: Everybody likes \qquad .
C3: \qquad makes you drunk.
C4: We make \qquad out of corn. tortillas
choices
wine

What is a "Context"?

Can be anything you want!

- Entire contents of the sentence
- One word before and after
- Words in the same sentence
- Document it appears in
- Many other variations...

A bottle of tezguino is on the table. Tezguino makes you drunk.

I had a fancy bottle of wine and got drunk last night! The terrible wine is on the table.

What is a "Context"?

Can be anything you want!

- Entire contents of the sentence
- Unlikely to occur again!
- One word before and after
- Words in the same sentence
- Document ID it appears in
- Many other variations...

A bottle of tezguino is on the table. Tezguino makes you drunk.

I had a fancy bottle of wine and got drunk last night! The terrible wine is on the table.

C1 C2 C3 C4
tezguino
wine

What is a "Context"?

Can be anything you want!

- Entire contents of the sentence
- One word before and after
- Or n-words
- Words in the same sentence
- Document it appears in
- Many other variations...

A bottle of tezguino is on the table. Tezguino makes you drunk.

I had a fancy bottle of wine and got drunk last night! The terrible wine is on the table.
wine

What is a "Context"?

Can be anything you want!

- Entire contents of the sentence
- One word before and after
- Words in the same sentence
- Filter: nouns and verbs?
- Bag of words in a window
- Document it appears in
- Many other variations...

A bottle of tezguino is on the table. Tezguino makes you drunk.

I had a fancy bottle of wine and got drunk last night! The terrible wine is on the table.
wine

What is a "Context"?

Can be anything you want!

- Entire contents of the sentence
- One word before and after
- Words in the same sentence
- Document it appears in
- Term-document matrix!
- Latent Semantic Analysis
- Many other variations...

A bottle of tezguino is on the table. Tezguino makes you drunk.

I had a fancy bottle of wine and got drunk last night! The terrible wine is on the table.

D1 D2 D3 D4
tezguino
table
bottle
drunk
wine

What are word embeddings?

Back to SVD?

Example Word Projection

Clustering?

Clustering for Twitter

http://www.cs.cmu.edu/~ark/TweetNLP/cluster viewer.html

Problem with SVD (\& Clustering)

Computational Complexity

- SVD: O(mn $\left.{ }^{2}\right)$
- Clustering: $\mathrm{O}(\mathrm{knm})$ per iteration, or $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- But, n can be 100,000!

"One shot"

- Difficult to add new documents or words
- Cannot work with streaming data

Predict surrounding words

Similar Meaning = Close

Target Word	BoW5	BoW2	Target Word	BoW5	BoW2
batman	nightwing aquaman catwoman superman manhunter	superman superboy aquaman catwoman batgirl	florida	gainesville fla jacksonville tampa lauderdale	fla alabama gainesville tallahassee texas
hogwarts	dumbledore hallows half-blood malfoy snape	evernight sunnydale garderobe blandings collinwood	object-oriented	aspect-oriented smalltalk event-driven prolog domain-specific	aspect-oriented event-driven objective-c dataflow 4 gl
turing	nondeterministic non-deterministic computability deterministic finite-state	non-deterministic finite-state nondeterministic buchi primality	dancing	singing dance dances dancers tap-dancing	singing dance dances breakdancing clowning

Similar Meaning = Close

The
Sicilian
gelato
was
extremely
rich.

The
Italian
ice-cream
was
very
velvety.

Similar Meaning = Close

Target Word	BoW5	BoW2	Target Word	BoW5	BoW2
batman	nightwing aquaman catwoman superman manhunter	superman superboy aquaman catwoman batgirl	florida	gainesville fla jacksonville tampa lauderdale	fla alabama gainesville tallahassee texas
hogwarts	dumbledore hallows half-blood malfoy snape	evernight sunnydale garderobe blandings collinwood	object-oriented	aspect-oriented smalltalk event-driven prolog domain-specific	aspect-oriented event-driven objective-c dataflow 4 gl
turing	nondeterministic non-deterministic computability deterministic finite-state	non-deterministic finite-state nondeterministic buchi primality	dancing	singing dance dances dancers tap-dancing	singing dance dances breakdancing clowning

Similar Meaning = Close

The
Sicilian
gelato
was
extremely
rich.

The
Italian
ice-cream
was
very
velvety.

Vectors "know" Gender

male : female :: King : queen

King - male + female queen

They "know" Tenses!

walking : walked :: swimming : swam
swimming - walking + walked swam

They "know" Facts!

https://siddhant7.github.io/Vector-Representation-of-Words/

Word embeddings

Variations

- Skip-gram: predict context from word
- CBOW: predict word from context bag of words
- Dependencies: a better description of context

Uses

- Similarity
- Grammar
- Analogies
- Odd one out

Demo:
https://rare-technologies.com/word2vec-tutorial/\#bonus app

Back to document vectors?

Average

Max-
pooling

In-Class Activity 2

