Embeddings

Sameer Singh and Conal Sathi

BANA 290: ADVANCED DATA ANALYTICS MACHINE LEARNING FOR TEXT SPRING 2018

May 15, 2018

Upcoming...

• Homework 3 will be out this week

Homework

- Due in ~2 weeks: May 29, 2017
- Focused on clustering

Project

- Instructions for proposal are out
- Due tonight: May 15th
- Progress presentations in week 10 (~3 weeks)

Outline

Vector Space Models

Latent Semantic Analysis

Word Embeddings

Outline

Vector Space Models

Latent Semantic Analysis

Word Embeddings

Document Vectors

Vector Space Models!

Supervised Learning

- As features in classification
- Labels *propagate* along similar documents

Unsupervised Learning

- As distance in clustering
- Defined by similar documents

Term-Document Matrix

Local and Global Weighting

Local Weighting

- Binary:
- Term Freq:
- Log:

Global Weighting

- Binary:
- Normal:
- IDF:

Example: Documents

c1: Human machine interface for ABC computer applications
c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user perceived response time to error measurement

m1: The generation of random, binary, ordered treesm2: The intersection graph of paths in treesm3: Graph minors IV: Widths of trees and well-quasi-orderingm4: Graph minors: A survey

Document Similarity

A survey of user opinion of computer system response time

Relation of user perceived response time to error measurement

The generation of random, binary, ordered trees

Example

	c1	c2	с3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Example: Word-Doc Matrix

Problem with Sparse Matrices

c2: A survey of user opinion of computer system response time

m4: Graph minors: A survey

c1: Human machine interface for ABC computer applications

Example

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	r (h	uman
time	0	1	0	0	1	0	0	r (hu	man.r
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

The Problem

Two problems that arise when using the vector space model:

Synonymy:

- many ways to refer to the same object, e.g. car and automobile
- leads to poor recall

Polysemy:

- most words have more than one distinct meaning, e.g. model, python, chip
- leads to poor precision

The Problem

but are related

but not truly related

Example from Lillian Lee

Example: Distance Matrix

Going from Sparse to Dense

Outline

Vector Space Models

Latent Semantic Analysis

Word Embeddings

Latent Semantic Analysis (LSA)

Term-Document Matrix

- "Word i appears" = row i
- "in document j" = column j
- Huge matrix (mostly zeros)
 - Treat zeros as if word is not relevant?

PCA/SVD on this matrix provides a new representation

- Latent = "hidden"
 - Consider which other words "could have appeared"
- Semantic = "topics"
 - Fuzzy search ("concept" instead of "word" matching)

-	Doc j
Word i	?

Singular Value Decomp (SVD)

Latent Semantic Analysis (LSA)

Example: Term-Doc Matrix

Example: Decomposition

c1 c2 c3 c4 c5 m1 m2 m3 m4

New Document Vectors

Example: Distance Matrix

Example: Reconstruction

In-Class Activity 1

Outline

Vector Space Models

Latent Semantic Analysis

Word Embeddings

Let's look at words

A bottle of tezguino is on the table. Everybody likes tezguino. Tezguino makes you drunk. We make tezguino out of corn.

What does tezguino mean? Loud, motor oil, tortillas, choices, wine

You shall know a word by the company keeps. (Firth, 1957)

Term-Context Matrix

C1 C2 C3 C4

C1: A bottle of _____ is on the table.

- C2: Everybody likes _____.
- C3: _____ makes you drunk.

C4: We make _____ out of corn.

tezguino

loud

motor oil

tortillas

choices

Can be anything you want!

- Entire contents of the sentence
- One word before and after
- Words in the same sentence
- Document it appears in
- Many other variations...

A bottle of tezguino is on the table. Tezguino makes you drunk.

I had a fancy bottle of wine and got drunk last night! The terrible wine is on the table.

Can be anything you want!

- Entire contents of the sentence
 - Unlikely to occur again!
- One word before and after
- Words in the same sentence
- Document ID it appears in
- Many other variations...

A bottle of tezguino is on the table. Tezguino makes you drunk.

I had a fancy bottle of wine and got drunk last night! The terrible wine is on the table.

C1 C2 C3 C4

tezguino

Can be anything you want!

- Entire contents of the sentence
- One word before and after
 - Or n-words
- Words in the same sentence
- Document it appears in
- Many other variations...

A bottle of tezguino is on the table. Tezguino makes you drunk.

I had a fancy bottle of wine and got drunk last night! The terrible wine is on the table.

bottle-of is-on makes-you and-got the-terrible

tezguino

Can be anything you want!

- Entire contents of the sentence
- One word before and after
- Words in the same sentence
 - Filter: nouns and verbs?
 - Bag of words in a window
- Document it appears in
- Many other variations...

A bottle of tezguino is on the table. Tezguino makes you drunk.

I had a fancy bottle of wine and got drunk last night! The terrible wine is on the table.

bottle table you drunk fancy night terrible

tezguino

Can be anything you want!

- Entire contents of the sentence
- One word before and after
- Words in the same sentence
- Document it appears in
 - Term-document matrix!
 - Latent Semantic Analysis
- Many other variations...

A bottle of tezguino is on the table. Tezguino makes you drunk.

I had a fancy bottle of wine and got drunk last night! The terrible wine is on the table.

D1 D2 D3 D4 tezguino table bottle drunk wine

What are word embeddings?

Back to SVD?

Example Word Projection

Clustering?

Clustering for Twitter

http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html

Problem with SVD (& Clustering)

Computational Complexity

- SVD: O(mn²)
- Clustering: O(knm) per iteration, or O(n³)
- But, n can be 100,000!

"One shot"

- Difficult to add new documents or words
- Cannot work with streaming data

Predict surrounding words

Target Word BoW5 B		BoW2	Target Word	BoW5	BoW2
batman	nightwing	superman		gainesville	fla
	aquaman	superboy		fla	alabama
	catwoman	aquaman	florida	jacksonville	gainesville
	superman	catwoman		tampa	tallahassee
	manhunter	batgirl		lauderdale	texas
hogwarts	dumbledore	evernight		aspect-oriented	aspect-oriented
	hallows	sunnydale		smalltalk	event-driven
	half-blood	garderobe	object-oriented	event-driven	objective-c
	malfoy	blandings		prolog	dataflow
	snape	collinwood		domain-specific	4gl
turing	nondeterministic	non-deterministic		singing	singing
	non-deterministic	finite-state		dance	dance
	computability	nondeterministic	dancing	dances	dances
	deterministic	buchi		dancers	breakdancing
	finite-state	primality		tap-dancing	clowning

The Sicilian gelato was extremely rich. The Italian ice-cream was very velvety.

https://siddhant7.github.io/Vector-Representation-of-Words/

Target Word BoW5 Bo		BoW2	Target Word	BoW5	BoW2
batman	nightwing	superman		gainesville	fla
	aquaman	superboy		fla	alabama
	catwoman	aquaman	florida	jacksonville	gainesville
	superman	catwoman		tampa	tallahassee
	manhunter	batgirl		lauderdale	texas
hogwarts	dumbledore	evernight		aspect-oriented	aspect-oriented
	hallows	sunnydale	object-oriented	smalltalk	event-driven
	half-blood	garderobe		event-driven	objective-c
	malfoy	blandings		prolog	dataflow
	snape	collinwood		domain-specific	4gl
turing	nondeterministic	non-deterministic		singing	singing
	non-deterministic	finite-state		dance	dance
	computability	nondeterministic	dancing	dances	dances
	deterministic	buchi		dancers	breakdancing
	finite-state	primality		tap-dancing	clowning

The Sicilian gelato was extremely rich. The Italian ice-cream was very velvety.

https://siddhant7.github.io/Vector-Representation-of-Words/

Vectors "know" Gender

https://siddhant7.github.io/Vector-Representation-of-Words/

swimming – walking + walked swam

https://siddhant7.github.io/Vector-Representation-of-Words/

Word embeddings

Variations

- Skip-gram: predict context from word
- CBOW: predict word from context bag of words
- Dependencies: a better description of context

Uses

- Similarity
- Grammar
- Analogies
- Odd one out

Back to document vectors?

pooling

In-Class Activity 2