Intro Linear Algebra 3A: 1st midterm
Monday October 19, 5:00-5:50pm October 20, 2015

Short answers.

Exercise 1

(a) $[8,4,-3,5]^{T}$.
(b) $[8,4,-3,5]^{T}$ (same computation as (a)).
(c) $x_{4}[1,0,-1,1]^{T}+[0,0,1,0]$.
(d)

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(e) Reduced row echelon form has zero row: columns do not span \mathbf{R}^{4}. Reduced row echelon form has free variables: columns not linearly independent.

Exercise 2

(a) $[1,1,-1]^{T}$.
(b)

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Exercise 3 (a) False. One has $(4,0)=T((2,0)) \neq 2 T(1,0)=2(1,0)$.
(b) False, 3 vectors never span \mathbf{R}^{4} (there will always be a zero row in the matrix with the vectors as columns.
(c) True. If $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}=0$ with not all $c_{i}=0$, then one has $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+$ $c_{3} \mathbf{v}_{\mathbf{3}}+\mathbf{v}_{\mathbf{4}} c_{4}=0$. The latter expression shows that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}$ are still dependent.

