Intro Linear Algebra 3A: midterm 1
Monday January 30 2017, 00:00 - 00.50 pm
There are 3 exercises, worth a total of $100=42+28+30$ points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.
Name:
Student ID:

Exercise $1(42=6+16+7+3+5+5 \mathrm{pts})$
Let

$$
A=\left[\begin{array}{rrrr}
4 & -1 & 7 & -7 \\
1 & 3 & 5 & 21 \\
2 & 0 & 4 & 0 \\
1 & 1 & 3 & 7
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
1 \\
-3 \\
0 \\
-1
\end{array}\right]
$$

(a) Compute $A \mathbf{b}$.
(b) Compute the reduced row echelon form of the augmented matrix $[A \mid \mathbf{b}]$.
(c) Solve $A \mathbf{x}=\mathbf{b}$ in parametric vector form.
(d) Solve $A \mathbf{x}=\mathbf{0}$ in parametric vector form.
(e) Is the linear map corresponding to A one-to-one?
(f) Is the span of the columns of A equal to \mathbf{R}^{4} ?

Solution:

(a) $[14,-29,2,-9]^{T}$;
(b)

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 2 & 0 & 0 \\
0 & 1 & 1 & 7 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(c)

$$
x_{3}[-2,-1,1,0]^{T}+x_{4}[0,-7,0,1]^{T}+[0,-1,0,0]^{T}
$$

(d)

$$
x_{3}[-2,-1,1,0]^{T}+x_{4}[0,-7,0,1]^{T}
$$

(e) No, free variables.
(f) No, zero rows in RREF.

Exercise $2(28=5+5+12+6 \mathrm{pts})$
Consider the vectors

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

in \mathbf{R}^{2}. Furthermore, consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
4 \\
3 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

in \mathbf{R}^{3}.
(a) Show that the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ are linearly dependent and find a linear dependence relation between them.
(b) Show that the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ span \mathbf{R}^{2}.
(c) Construct a matrix A with $A \mathbf{u}_{1}=\mathbf{v}_{1}, A \mathbf{u}_{2}=\mathbf{v}_{2}$ and $A \mathbf{u}_{3}=\mathbf{v}_{3}$.
(d) Is there a matrix A with $A \mathbf{u}_{1}=\mathbf{v}_{1}, A \mathbf{u}_{2}=\mathbf{v}_{2}$ and $A \mathbf{u}_{3}=2 \mathbf{v}_{3}$?

Solution:

(a) $2 \mathbf{u}_{1}-\mathbf{u}_{2}-\mathbf{u}_{3}=\mathbf{0}$ (or a nonzero multiple of this relation).
(b) Recuded row echelon form of $\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ has no zero rows.
(c)

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

(d) No, you get an inconsistent system, since $A 2 \mathbf{u}_{1}-A \mathbf{u}_{2}-A \mathbf{u}_{3} \neq A \mathbf{0}=\mathbf{0}$.

Exercise 3 (30 pts)
True or false? No explanation required. Points is $-10+4 \cdot \#$ correct.
(1) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be a map such that $T(\mathbf{0})=\mathbf{0}$ and such that for $c \in \mathbf{R}$ and $\mathbf{u} \in \mathbf{R}^{3}$ one has $T(c \mathbf{u})=c T(\mathbf{u})$. Then T is a linear map.
(2) Let m be a positive integer and let $T: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}$ be a linear map which is one-to-one. Then T is onto.
(3) Let A be an $m \times n$ matrix. Then A has a unique row echelon form.
(4) Let A be a matrix. Then the equation $A \mathbf{x}=\mathbf{0}$ has either precisely 1 or infinitely many solutions.
(5) Let $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{4}$ be linearly dependent vectors. Then \mathbf{u} is a multiple of \mathbf{v}.
(6) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear map which is reflection in the line $x_{1}=x_{2}$. Then the standard matrix of this map is

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

(7) The map $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3},(x, y) \mapsto(x+y, 1+x-y-y-1, y+x+y)$ is a linear map.
(8) Let $[A \mid \mathbf{b}]$ be an augmented matrix. If we apply a row operation to this matrix, then the solution set might change.
(9) Let $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{3}$. Then the vectors $\mathbf{u}, \mathbf{v}, 2 \mathbf{u}+3 \mathbf{v}$ are linearly dependent. (10) Let

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right], \mathbf{w}=\left[\begin{array}{l}
-2 \\
-2 \\
-2
\end{array}\right]
$$

Then \mathbf{w} is in the span of \mathbf{u}, \mathbf{v}.

Solution:

(1) False.
(2) True.
(3) False (unique reduced row echelon form).
(4) True.
(5) False (zero vector can be in there).
(6) True.
(7) True.
(8) False.
(9) True.
(10) True.

