Intro Linear Algebra 3A: midterm 1

Friday April 21 2017, 00:00-00.50 pm
There are 4 exercises, worth a total of $100=36+36+20+8$ points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise $1(36=6+12+6+4+4+4 \mathrm{pts})$
Let

$$
A=\left[\begin{array}{rrrrr}
3 & 2 & -1 & 3 & 0 \\
0 & 1 & 0 & 2 & 1 \\
1 & 0 & -1 & 1 & 0
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right], \mathbf{c}=\left[\begin{array}{c}
1 \\
0 \\
1 \\
-1 \\
-2
\end{array}\right]
$$

(a) Compute $A \mathbf{c}$.
(b) Compute the reduced row echelon form of the augmented matrix $[A \mid \mathbf{b}]$.
(c) Solve $A \mathbf{x}=\mathbf{b}$ in parametric vector form.
(d) Is there $\mathbf{a} \mathbf{b}^{\prime} \in \mathbf{R}^{3}$ such that the equation $A \mathbf{x}=\mathbf{b}^{\prime}$ has a unique solution?
(e) Is the linear map corresponding to A one-to-one?
(f) Is the span of the columns of A equal to \mathbf{R}^{3} ?

Solution:

(a) $[-1,-4,-1]^{T}$;
(b)

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -1 & -1 & 1 \\
0 & 1 & 0 & 2 & 1 & 1 \\
0 & 0 & 1 & -2 & -1 & 1
\end{array}\right]
$$

(c)

$$
[1,1,1,0,0]^{t}+x_{4}[1,-2,2,1,0]^{T}+x_{5}[1,-1,1,0,1]^{T}
$$

(d) No, always infinitely many - RREF will always be consistent and have free variables.
(e) No, free variables.
(f) Yes, no zero rows in RREF.

Exercise $2(36=4+4+5+10+10+3 \mathrm{pts})$
For $c \in \mathbf{R}$ consider

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
1 \\
c \\
0
\end{array}\right]
$$

(a) Show that $\mathbf{u}_{1}, \mathbf{u}_{2}$ are linearly independent.
(b) Describe in words what the span of \mathbf{u}_{1} and \mathbf{u}_{2} looks like as a subset of \mathbf{R}^{3}.
(c) Are $\mathbf{u}_{1}, \mathbf{u}_{2}$ and $42 \mathbf{u}_{1}-1296 \mathbf{u}_{2}$ linearly independent?
(d) For which c are $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3} linearly dependent? For each such c, find a dependence relation.
(e) Construct a matrix A such that $A \mathbf{u}_{1}=\mathbf{u}_{2}$ and $A \mathbf{u}_{2}=\mathbf{u}_{1}$.
(f) Is the answer to (e) unique?

Solution:

(a) The vectors are not multiple of each other, so independent.
(b) It is a plane through the origin.
(c) $-42 \mathbf{u}_{1}+1296 \mathbf{u}_{2}+\left(42 \mathbf{u}_{1}-1296 \mathbf{u}_{2}\right)=0$, so dependent.
(d) For $c=1 / 2$. One has $-3[1,1,1]^{T}+[1,2,3]^{T}+2[1,1 / 2,0]^{T}=0$.
(e) For example, one can take

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -1 \\
3 & 2 & -2
\end{array}\right]
$$

(f) No, there are many options (free variables).

Exercise 3 (20 pts)
True or false? No explanation required. Each question is worth 2 points.
(1) Every matrix has more than 1 row echelon form.
(2) Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3} \in \mathbf{R}^{5}$. Let $\mathbf{b} \in \mathbf{R}^{5}$ with $\mathbf{b} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Then $\mathbf{b} \in \operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
(3) The standard matrix of the reflection in the line $x_{2}=x_{1}$ on \mathbf{R}^{2} is

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

(4) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation with standard matrix A. Then T is one-to-one if and only if the columns of A are linearly independent.
(5) Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{R}^{7}$. Then one has $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{w}+\mathbf{v})$.
(6) The vectors

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right],\left[\begin{array}{c}
-1 \\
9 \\
13
\end{array}\right]
$$

are linearly dependent.
(7) Assume that the matrix equation $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions. Then the equation $A \mathbf{x}=\mathbf{0}$ has a non-trivial solution.
(8) A linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
(9) The augmented matrix

$$
\left[\begin{array}{ccccc|c}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 10 & 11 & 12
\end{array}\right]
$$

has 4 free variables.
(10) The map

$$
\begin{aligned}
\mathbf{R}^{3} & \rightarrow \mathbf{R}^{3} \\
(x, y, z) & \mapsto(3 y+x, 2 x+y+z, 3 x+2+z)
\end{aligned}
$$

is linear.

Solution:

(1) False
(2) True
(3) False
(4) True
(5) True
(6) True
(7) True
(8) True
(9) False, only 3.
(10) False

Exercise 4 ($8=4+4 \mathrm{pts})$
Prove the following statements.
(a) Matrices with the same reduced row echelon form can be obtained from each other by using row operations.
(b) Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear map. If T is onto, then T is one-to-one.

Solution:

(a) The row operations are invertible (check row replacement). Hence one can transform matrix A to RREF, and then transform it to B by inverting the operations which make B into its reduced row echelon form.
(b) The corresponding matrix A has no zero rows, and because it is square, has no free variables. Hence the map is one-to-one.

