Intro Linear Algebra 3A: midterm 1 Friday April 21 2017, 00:00 – 00.50 pm

There are 4 exercises, worth a total of 100 = 36 + 36 + 20 + 8 points. Non-graphical calculators allowed. No books or notes allowed. Provide computations and or explanations, unless stated otherwise.

Name:

Student ID:

Exercise 1 (36 = 6 + 12 + 6 + 4 + 4 + 4 pts)Let

$$A = \begin{bmatrix} 3 & 2 & -1 & 3 & 0 \\ 0 & 1 & 0 & 2 & 1 \\ 1 & 0 & -1 & 1 & 0 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \\ -2 \end{bmatrix}.$$

_

(a) Compute Ac.

(b) Compute the reduced row echelon form of the augmented matrix $[A|\mathbf{b}]$.

(c) Solve $A\mathbf{x} = \mathbf{b}$ in parametric vector form.

(d) Is there a $\mathbf{b}' \in \mathbf{R}^3$ such that the equation $A\mathbf{x} = \mathbf{b}'$ has a unique solution?

(e) Is the linear map corresponding to A one-to-one?

(f) Is the span of the columns of A equal to \mathbb{R}^3 ?

Solution:

(a)
$$[-1, -4, -1]^T$$
;
(b)

(c)

$$[1, 1, 1, 0, 0]^t + x_4[1, -2, 2, 1, 0]^T + x_5[1, -1, 1, 0, 1]^T$$

(d) No, always infinitely many - RREF will always be consistent and have free variables.

(e) No, free variables.

(f) Yes, no zero rows in RREF.

Exercise 2 (36 = 4 + 4 + 5 + 10 + 10 + 3 pts)For $c \in \mathbf{R}$ consider

$$\mathbf{u}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 1\\c\\0 \end{bmatrix}$$

(a) Show that $\mathbf{u}_1, \mathbf{u}_2$ are linearly independent.

(b) Describe in words what the span of \mathbf{u}_1 and \mathbf{u}_2 looks like as a subset of \mathbf{R}^3 .

(c) Are $\mathbf{u}_1, \mathbf{u}_2$ and $42\mathbf{u}_1 - 1296\mathbf{u}_2$ linearly independent?

(d) For which c are \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 linearly dependent? For each such c, find a dependence relation.

(e) Construct a matrix A such that $A\mathbf{u}_1 = \mathbf{u}_2$ and $A\mathbf{u}_2 = \mathbf{u}_1$.

(f) Is the answer to (e) unique?

Solution:

(a) The vectors are not multiple of each other, so independent.

(b) It is a plane through the origin.

(c) $-42\mathbf{u}_1 + 1296\mathbf{u}_2 + (42\mathbf{u}_1 - 1296\mathbf{u}_2) = 0$, so dependent. (d) For c = 1/2. One has $-3[1,1,1]^T + [1,2,3]^T + 2[1,1/2,0]^T = 0$.

(e) For example, one can take

$$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 2 & 1 & -1 \\ 3 & 2 & -2 \end{array}\right].$$

(f) No, there are many options (free variables).

Exercise 3 (20 pts)

True or false? No explanation required. Each question is worth 2 points.

- (1) Every matrix has more than 1 row echelon form.
- (2) Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \in \mathbf{R}^5$. Let $\mathbf{b} \in \mathbf{R}^5$ with $\mathbf{b} \in \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Then $\mathbf{b} \in \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.
- (3) The standard matrix of the reflection in the line $x_2 = x_1$ on \mathbf{R}^2 is

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

- (4) Let $T : \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation with standard matrix A. Then T is one-to-one if and only if the columns of A are linearly independent.
- (5) Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{R}^7$. Then one has $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{w} + \mathbf{v})$.
- (6) The vectors

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 4\\4\\4 \end{bmatrix}, \begin{bmatrix} -1\\9\\13 \end{bmatrix}$$

are linearly dependent.

(7) Assume that the matrix equation $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions. Then the equation $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.

(8) A linear transformation $T : \mathbf{R}^n \to \mathbf{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.

(9) The augmented matrix

has 4 free variables.

(10) The map

$$\mathbf{R}^3 \to \mathbf{R}^3$$
$$(x, y, z) \mapsto (3y + x, 2x + y + z, 3x + 2 + z)$$

is linear.

Solution:

(1) False

- (2) True
- (3) False
- (4) True
- (5) True
- (6) True (6) True
- (7) True

(7) True (8) True

- (0) \mathbf{E} 1
- (9) False, only 3.

(10) False

Exercise 4 (8 = 4 + 4 pts)

Prove the following statements.

(a) Matrices with the same reduced row echelon form can be obtained from each other by using row operations.

(b) Let $T: \mathbf{R}^{n} \to \mathbf{R}^{n}$ be a linear map. If T is onto, then T is one-to-one.

Solution:

(a) The row operations are invertible (check row replacement). Hence one can transform matrix A to RREF, and then transform it to B by inverting the operations which make B into its reduced row echelon form.

(b) The corresponding matrix A has no zero rows, and because it is square, has no free variables. Hence the map is one-to-one.