Intro Linear Algebra 3A: midterm 2

Friday May 19 2017, 10:00-10.50 pm

There are 4 exercises, worth a total of $100=34+22+24+20$ points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise $1(34=6+6+6+10+6 \mathrm{pts})$
For $s \in \mathbf{R}$ consider the matrix

$$
A_{s}=\left[\begin{array}{ccc}
1 & 2 & s \\
1 & s+1 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

(a) Compute A_{s}^{2} when $s=0$.
(b) Show that A_{s} is invertible for $s \neq 1$.
(c) For each s, compute the rank of A_{s}.
(d) Compute the inverse of A_{s} when $s=3$.
(e) Use Cramer's rule to solve $A_{s} \mathbf{x}=[0,1,0]^{T}$ when $s=0$.

Solution:

(a)

$$
\left[\begin{array}{lll}
3 & 4 & 2 \\
3 & 5 & 2 \\
4 & 6 & 3
\end{array}\right]
$$

(b) $\operatorname{det}\left(A_{s}\right)=-(s-1)^{2}$, so invertible when $s \neq 1$.
(c) For $s \neq 1$, invertible, so rank is 3 . If $s=1$, then the rank is 1 .
(d)

$$
\left[\begin{array}{ccc}
-\frac{1}{2} & -1 & \frac{5}{2} \\
0 & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right]
$$

(e) $[2,-1,0]^{T}$.

Exercise $2(22=7+6+3+6 \mathrm{pts})$
Consider the matrix

$$
M=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 1 & 0 & 1 & 0 \\
3 & 1 & 4 & 1 & 5 & 9
\end{array}\right]
$$

with reduced row echelon form

$$
E=\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 2 & 15 \\
0 & 0 & 0 & 1 & 0 & -6
\end{array}\right]
$$

(a) Compute a basis of the null space of M.
(b) Compute a basis of the column space of M.
(c) Compute the dimension of the null space of M.
(d) (hard) Let N be a 6×3 matrix. Show that 6×6 matrix $N M$ is neither onto nor one-to-one. Give a proof.

Solution:

(a) $\operatorname{Span}\left\{[-1,-1,1,0,0,0]^{T},[-1,-2,0,0,1,0]^{T},[0 .-15,0,6,0,1]^{T}\right\}$,
(b) $\left\{[1,1,3]^{T},[2,0,1]^{T},[4,0,1]^{T}\right\}$, pivot columns.
(c) 3
(c) M is not one-to-one, so $N M$ is not one-to-one (free variables). N is not onto (not enough pivots), so $N M$ is not onto.

Exercise $3(24=8+10+6$ pts $)$
Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

(a) Compute the characteristic polynomial of A and show that -1 and 3 are the only eigenvalues of A.
(b) For each eigenvalue of A, compute a basis of its corresponding eigenspace.
(c) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

Solution:

(a) $-(\lambda+1)^{2}(\lambda-3)$.
(b) E_{-1} has basis $\left\{[-1,1,0]^{T},[-1 / 2,0,1]^{T}\right\}$. E_{3} has basis $\left\{[1,1,0]^{T}\right\}$.
(c) Yes,

$$
D=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right], P=\left[\begin{array}{ccc}
-1 & -1 / 2 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Exercise 4 (20 pts)
True or false? No explanation required. Each question is worth 2 points.
(1) Let A, B be $n \times n$ matrices. Assume that $A B=B A$. Then $(A B)^{T}=A^{T} B^{T}$.
(2) Let A be an $n \times n$ matrix. Assume that there is a matrix B such that $B A=I_{n}$. Then A is invertible and $B=A^{-1}$.
(3) Every subspace $H \subseteq \mathbf{R}^{n}$ has a unique basis.
(4) Let A be an 8×11 matrix. Then $\operatorname{rank}(A)+\operatorname{dim} \operatorname{Nul}(A)=8$.
(5) Let A be a 3×3 matrix with $\operatorname{det}(A)=2^{3}$. Then $\operatorname{det}(A+A)=\operatorname{det}(A) \cdot \operatorname{det}(A)$.
(6) Let $C \subseteq \mathbf{R}^{2}$ be a disc with area 51. Let $A=\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]$. Then $A(C) \subseteq \mathbf{R}^{2}$ has area 51.
(7) Let A be an $n \times n$ matrix and assume that λ is the only eigenvalue of A and that the eigenspace at λ has dimension n. Then $A=\lambda I_{n}$.
(8) Let A, B be similar $n \times n$ matrices. If A is diagonalizable, then B is also diagonalizable.
(9) Let A, B be $n \times m$ matrices which have the same reduced row echelon form. Then the column spaces of A and B are the same.
(10) Let A, B be $n \times m$ matrices which have the same reduced row echelon form. Then the null spaces of A and B are the same.

Solution:

(1) True
(2) True
(3) False
(4) False
(5) True
(6) False
(7) True
(8) True
(9) False
(10) True

