Intro Linear Algebra 3A: final exam

Wednesday June 8 2016, 10:30-12:30
There are 5 exercises, worth $100=21+22+23+14+20$ points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations.
Name:
Student ID:

Exercise $1(21=6+9+4+2 \mathrm{pts})$
Let A be the real matrix

$$
A=\left[\begin{array}{cccc}
2 & 0 & -1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 4 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

(a) Compute the characteristic polynomial of A and list the eigenvalues with multiplicities.
(b) Compute a basis for each eigenspace of A.
(c) Are there a real invertible matrix P and a real diagonal matrix D such that $A=P D P^{-1}$? If yes, find such a P and D. If no, explain why not.
(d) Are there a complex invertible matrix P and a complex diagonal matrix D such that $A=P D P^{-1}$? If yes, find such a P and D. If no, explain why not.

Solution:

(a) $(\lambda-1)(\lambda-2)(\lambda-3)^{2}$. Eigenvalues are 1 (mult. 1), 2 (mult. 1) and 3 (mult. 2).
(b) E_{1} has basis $\left\{[0,1,0,0]^{T}\right\} . E_{2}$ has basis $\left\{[-3,-1,1,1]^{T}\right\} . E_{3}$ has basis $\left\{[-1,0,1,0]^{T}\right\}$.
(c) No, the dimension of eigenspace at 3 is not big enough (<2).
(d) No, the dimension of eigenspace at 3 is not big enough (<2).

Exercise $2(22=4+3+7+2+2+4 \mathrm{pts})$
For $a \in \mathbf{R}$ set

$$
A_{a}=\left[\begin{array}{ccc}
1 & -1 & a \\
-2 & a & 1 \\
-1 & a & -1
\end{array}\right]
$$

and set $\mathbf{v}=[0,1,0]^{T}$.
(a) Compute the determinant of A_{a}.
(b) For each a, determine the rank of A_{a}.
(c) Is A_{a} invertible for $a=0$? If no, explain why not. If yes, compute its inverse.
(d) Compute a basis for the column space of A_{a} when $a=1$.
(e) Compute a basis for the null space of A_{a} when $a=1$.
(f) For each a determine the number of solutions to $A_{a} \mathbf{x}=\mathbf{v}$ (choose from 0,1 or $\infty)$.

Solution:

(a) $-(a+3)(a-1)$.
(b) For $a \neq-3,1$, the rank is 3 . For $a=1$ and $a=-3$, the rank is 2 .
(c) Yes, its inverse is

$$
\left[\begin{array}{ccc}
0 & -\frac{1}{3} & -\frac{1}{3} \\
-1 & -\frac{1}{3} & -\frac{1}{3} \\
0 & \frac{1}{3} & -\frac{2}{3}
\end{array}\right]
$$

(d) First two columns (from reduced row echelon form, pivot columns) $\left\{[1,-2,-1]^{T},[-1,1,1]^{T}\right\}$.
(e) Basis is $\left\{[2,3,1]^{T}\right\}$.
(f) If $a \neq-3,1$, then there is 1 solution. If $a=1$, infinitely many. If $a=-3$, no solutions.

Exercise 3 ($23=4+1+7+2+5+4 \mathrm{pts}$)
Let W be the following subspace of \mathbf{R}^{4} :

$$
W=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
2 \\
-1
\end{array}\right]\right\}
$$

(a) Compute a basis of W.
(b) What is the dimension of W ?
(c) Compute an orthogonal basis of W.
(d) Compute an orthonormal basis of W.
(e) Compute the distance from $\mathbf{v}=[0,1,2,7]^{T}$ to W.
(f) Compute a basis of W^{\perp}.

Solution:

(a) $\left.\left\{[1,0,1,0]^{T}\right\},[0,1,2,0]^{T},[1,3,1,1]^{T}\right\}$ (the subspace is the column space of a matrix, and compute pivot columns to find basis).
(b) 3 .
(c) $\left\{[1,0,1,0]^{T},[-1,1,1,0]^{T},[1,2,-1,1]^{T}\right\}$ (after applying Gram-Schmidt).
(d) $\left\{1 / \sqrt{2}[1,0,1,0]^{T}, 1 / \sqrt{3}[-1,1,1,0]^{T}, 1 / \sqrt{7}[1,2,-1,1]^{T}\right\}$.
(e) $\mathbf{v}-\operatorname{Pro}_{W}(\mathbf{v})=[-1,-2,1,6]^{T}$ (use orthogonal basis computed in c). The answer is the length of this vector, which is $\sqrt{42}$.
(f) A basis is $\left\{[-1,-2,1,6]^{T}\right\}$ (one can use the answer in e).

Exercise $4(14=6+5+3$ pts $)$
Let

$$
A=\left[\begin{array}{ll}
2 & -2 \\
6 & -5
\end{array}\right] .
$$

(a) Compute all eigenvalues of A and determine for each eigenvalue a basis of the corresponding eigenspace.
(b) Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
(c) Compute A^{2016}. You can leave expressions like 7^{2016}.

Solution:

(a) Characteristic polynomial is $(\lambda+1)(\lambda+2)$. For $\lambda=-1$: $\left\{[2,3]^{T}\right\}$. For $\lambda=-2$: $\left\{[1,2]^{T}\right\}$.
(b)

$$
P=\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right], D=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]
$$

(c)

$$
P^{-1}=\left[\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right]
$$

One has, where $k=2016$,

$$
\begin{aligned}
A^{2016} & =P D^{2016} P^{-1}=\left[\begin{array}{cc}
2^{2}(-1)^{k}-3(-2)^{k} & (-2)(-1)^{k}+2(-2)^{k} \\
6(-1)^{k}-6(-2)^{k} & -3(-1)^{k}+4(-2)^{k}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2^{2}-3(-2)^{k} & -2+2(-2)^{k} \\
6-6(-2)^{k} & -3+4(-2)^{k}
\end{array}\right]
\end{aligned}
$$

Exercise 5 (20 pts)
True or false? No explanation required. Points $=3 \cdot \#$ correct -10 .
(1) The matrix

$$
\left[\begin{array}{cc}
0 & 1 \\
1 & 2 i
\end{array}\right]
$$

is diagonalizable over the complex numbers (where $i^{2}=-1$).
(2) Let A and B be real diagonalizable matrices of the same size. Then $A+B$ is diagonalizable.
(3) Let A is an $n \times m$ matrix which is not one-to-one and let B be an $m \times s$ matrix. Then the matrix $A B$ is not one-to-one.
(4) Consider the linear map $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which is a reflection through the origin. Then the standard matrix of T is $-I_{2}$.
(5) Let $W \subseteq \mathbf{R}^{4}$ be a subspace and let U be the standard matrix of the orthogonal projection Proj_{W} on W. Then one has $U=U^{2016}$.
(6) Let W be a subspace of \mathbf{R}^{5}. Then W has a unique orthonormal basis.
(7) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear map with matrix A. Let S be a region of \mathbf{R}^{3} of volume 2. Then the volume of $T(S)$ is equal to $\left|2 \cdot \operatorname{det}\left(-A^{T}\right)\right|$.
(8) Let A be a real diagonalizable $n \times n$ matrix such that the characteristic polynomial can be written as $(a-\lambda)^{n}$ for some real number a. Then one has $A=a I_{n}$.
(9) Let A be an $m \times n$ matrix. Then A has a unique row echelon form.
(10) Let $\mathbf{R} \rightarrow \mathbf{R}^{3}$ be the map given by $x \mapsto\left(x^{3}, x^{3}, x^{3}\right)$. Then the range (image) of this map is a subspace of \mathbf{R}^{3}.

Solution:

(1) False. The eigenvalues are i and i, but the eigenspace has dimension 1 only.
(2) False (many counterexamples).
(3) False, take

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(4) True.
(5) True.
(6) False, there are many.
(7) True.
(8) True.
(9) False (unique reduced row echelon form).
(10) True, the range is just $\{(x, x, x): x \in \mathbf{R}\}$, which is a subspace.

