Intro Linear Algebra 3A: final

 Monday June 12 2017, 10:30-12:30 pmThere are 6 exercises, worth a total of $100=12+20+20+12+16+20$ points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise 1 (11 pts)

Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(2,3),(3,2),(5,1)$ and $(6,0)$.

Solution

$y=4.3-0.7 x$.
Exercise $2(20=6+6+4+4$ pts $)$
For $x \in \mathbf{R}$ consider the matrix

$$
A_{x}=\left[\begin{array}{cccc}
1 & 1 & -1 & x \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & -2 & 2 & 3
\end{array}\right]
$$

(a) Compute the characteristic polynomial of A_{x} and show that 1 and 2 are the only eigenvalues.
(b) Compute a basis for each eigenspace of A_{x} when $x=-1$.
(c) Show that A_{x} is diagonalizable when $x=-1$, and find an invertible matrix P and a diagonal matrix D such that $A_{-1}=P D P^{-1}$.
(d) For which values of x is A_{x} diagonalizable?

Solution

(a) $(1-\lambda)^{3}(2-\lambda)$.
(b) E_{1} has basis $\left\{[1,0,0,0]^{T},[0,1,1,0]^{T},[0,1,0,1]^{T}\right\} . E_{2}$ has basis $\left\{[-1.0,-1,2]^{T}\right\}$. (c)

$$
D=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right], P=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

(d) Dimension of E_{1} is 2 except when $x=-1$. Hence onlly diagonalizable when $x=-1$.

Exercise $3(20=3+1+5+2+4+2+3 \mathrm{pts})$
Let

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1 \\
0
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
0 \\
8
\end{array}\right]
$$

Consider the subspace $H=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\} \subseteq \mathbf{R}^{5}$. Let $\mathbf{v}=[1,3,2,2,2]^{T}$.
(a) Show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a basis of H.
(b) What is the dimension of H ?
(c) Compute an orthogonal basis for H.
(d) Compute an orthonormal basis for H.
(e) Compute the orthogonal projection of \mathbf{v} onto H.
(f) Find the distance between \mathbf{v} and H.
(g) Find a basis of H^{\perp}.

Solution

(a) Easy check (folows also from c)
(b) 3
(c) $\left\{[1,1,1,1,1]^{T},[0,0,1,-1,0]^{T},[-2,-2,-1,-1,6]^{T}\right\}$.
(d) $\left\{1 / \sqrt{5}[1,1,1,1,1]^{T}, 1 / \sqrt{2}[0,0,1,-1,0]^{T}, 1 / \sqrt{46}[-2,-2,-1,-1,6]^{T}\right\}$.
(e) $2[1,1,1,1,1]^{T}$
(f) the distance vector is $[-1,1,0,0,0]^{T}$, and the distance is $\sqrt{2}$.
(g) $\left\{[-1,1,0,0,0]^{T},[7,0,-4,-4,1]^{T}\right\}$.

Exercise 4 ($12=3+3+1+3+2$ pts $)$
For $x \in \mathbf{R}$ consider the matrix

$$
A_{x}=\left[\begin{array}{cccccc}
1 & 2 & 0 & 0 & -3 & 1 \\
0 & 0 & 1 & 0 & x & 1 \\
0 & 0 & 0 & x & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Compute a basis of the null space of A_{x} when $x=2$.
(b) For each x, compute the rank of A_{x}.
(c) For which x is A_{x} invertible?
(d) Is $\left\{[1,0,0,0]^{T},[1,1,0,0]^{T},[1,1,1,0]^{T}\right\}$ a basis for the column space of A_{x} when $x=3$?
(e) Find a nonzero square matrix B with $B^{2}=0$.

Solution

(a) $\left\{[-2,1,0,0,0,0]^{T},[3,0,-2,0,1,0]^{T},[-1,0,-1,0,0,1]^{T}\right\}$
(b) $x \neq 0$, dimension is 3 , for $x=0$, the dimension is 2 .
(c) Not square, never invertible.
(d) Yes, they column space is equal to $\left\{[x, y, z, 0]^{T}: x, y, z \in \mathbf{R}\right\}$, and so is the span of the vectors.
(e)

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Exercise 5 ($16=6+6+4$ pts)
(a) Use row operations to compute the inverse of

$$
\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 0 & 1 \\
2 & 1 & 3
\end{array}\right]
$$

(b) Use Cramer's rule (determinants) to compute the inverse of

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 1 \\
2 & 1 & 3
\end{array}\right]
$$

(c) Let A be an $n \times n$ matrix. Assume that 1 is an eigenvalue of $A^{T}+I_{n}$. Show that A is not invertible.

Solution:

(a)

$$
\left[\begin{array}{rrr}
-\frac{1}{5} & -\frac{8}{5} & \frac{3}{5} \\
\frac{2}{5} & \frac{1}{5} & -\frac{1}{5} \\
0 & 1 & 0
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{rrr}
-\frac{1}{3} & -\frac{5}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\
0 & 1 & 0
\end{array}\right]
$$

(c) Let \mathbf{x} nonzero with $\left(A^{T}+I\right) \mathbf{x}=1 \mathbf{x}$. Then $A^{T} \mathbf{x}=0$. So A^{T} is not invertible. So A is not invertible.

Exercise 6 (20 pts)
True of false? No explanation required. Each question is worth 2 points.
(1) Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbf{R}^{m}$. Then the equation $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is always consistent.
(2) Let $H \subseteq \mathbf{R}^{n}$ be a subspace. Then the orthogonal projection onto H is a linear map from \mathbf{R}^{n} to \mathbf{R}^{n}.
(3) Let $\mathbf{x} \in \mathbf{R}^{n}$ nonzero. Then there is an $n \times n$ matrix A with \mathbf{x} as eigenvector.
(4) Let A be an $n \times n$ matrix which is not diagonalizable. Let P be an invertible matrix. Then $P A P^{-1}$ is not diagonalizable.
(5) Let A be an $n \times n$ matrix with orthogonal columns. Then $A^{T} A=I_{n}$.
(6) The parallelogram determined by the points $(-1,1),(0,1),(2,3),(3,3)$ has area 3.
(7) The set $\left\{(x, y) \in \mathbf{R}^{2}: x y=0\right\}$ is a subspace of \mathbf{R}^{2}.
(8) Let $H \subseteq \mathbf{R}^{7}$ be a subspace. Let $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{7}\right\}$ with $\operatorname{Span}(S)=H$. Then S is a basis of H.
(9) Let A, B be $n \times n$ matrices. Assume that A is invertible. Then $\left(A^{2}\right)^{T}(A+B) B^{2}$ is invertible.
(10) Let A, B be $n \times n$ matrices with the same reduced row echelon form. Then A and B have the same characteristic polynomial.

Solution:

(1) True.
(2) True.
(3) True.
(4) True
(5) False.
(6) False.
(7) False.
(8) False.
(9) False.
(10) False.

