Intro Linear Algebra 3A: final Monday March 20 2017, 1:30 – 3.30 pm

There are 5 exercises, worth a total of 100 = 20 + 25 + 20 + 15 + 20 points. Non-graphical calculators allowed. No books or notes allowed. Provide computations and or explanations, unless stated otherwise.

Name:

Student ID:

Exercise 1 (20 = 5 + 5 + 5 + 5 pts)For $x \in \mathbf{R}$ consider the matrix

$$A_x = \left[\begin{array}{rrr} 3 & 0 & 0 \\ 1 & 4 & 1 \\ 1 & x & 4 \end{array} \right]$$

Set $B = A_x$ where x = 1.

(a) Compute the characteristic polynomial of B and show that 3 and 5 are the eigenvalues of B.

(b) For each eigenvalue of B, compute a basis of the corresponding eigenspace of B.

(c) Is B diagonalizable? If so, find an invertible matrix P and a diagonal matrix D with $B = PDP^{-1}$.

(d) (hard) For which x is A_x diagonalizable over **R**?

Solution:

- (a) $-(\lambda 3)^2(\lambda 5)$.
- (b) E_3 has basis $\{[-1,0,1]^T, [-1,1,0]^T\}$. E_5 has basis $\{[0,1,1]^T\}$.
- (c) Yes, D = diag(3, 3, 5) and

$$P = \left[\begin{array}{rrr} -1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right].$$

(d) The characteristic polynomial if $(3 - \lambda) \cdot ((4 - \lambda)^2 - x)$. Over **R**: if x < 0, then we don't see all eigenvalues, not diagonalizable. If x > 0 then it has distinct eigenvalues unless x = 1, but in the latter case we have shown it is diagonalizable. We only have to check x = 0. In that case the matrix turns out not to be diagonalizable. Hence the matrix is diagonalizable for x > 0.

Exercise 2 (25 = 3 + 4 + 4 + 4 + 5 + 5 pts)For $x \in \mathbf{R}$ consider the matrix

$$A_x = \left[\begin{array}{rrrr} 1 & 0 & x \\ 1 & x & x \\ 1 & 3 & 1. \end{array} \right].$$

- (a) Compute A_x^2 when x = 1.
- (b) Show that A_x is invertible for $x \neq 0, 1$.
- (c) For x = 0 compute a basis for the null space and column space of A_x .
- (d) For x = 1, compute the rank and the dimension of the null space of A_x .
- (e) Compute A_x^{-1} when x = 2.

(f) (subtle) Set $\mathbf{v} = [0, 1, 3]^T$. Consider the equation $A_x[x_1, x_2, x_3]^T = \mathbf{v}$. For which x is there a solution with $x_3 = 1$?

Solution:

(a)

$$\left[\begin{array}{rrrrr} 2 & 3 & 2 \\ 3 & 4 & 3 \\ 5 & 6 & 5 \end{array}\right].$$

- (b) $det(A_x) = x x^2 = x(1 x)$. So invertible when $x \neq 0, 1$.
- (c) Column space: $\{[1, 1, 1]^T, [0, 0, 3]^T\}$. Null space $\{[0, 1, -3]^T\}$.
- (d) Rank 2, dimension null space 1.

$$\begin{bmatrix} 2 & -3 & 2 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & -1 \end{bmatrix}.$$

(f) If $x \neq 0, 1$ we can use Cramer's rule $1 = (3x - 3)/(x - x^2)$, and this has solution x = -3, 1. The valid solution is x = -3. We need to check the non invertible cases separately. It turns out that x = -3, 1 are the only cases in the end.

Exercise 3 (20 = 8 + 4 + 3 + 5 pts)Let

$$H = \operatorname{Span} \left\{ \left[egin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array}
ight], \left[egin{array}{c} 2 \\ 1 \\ 0 \\ 1 \end{array}
ight], \left[egin{array}{c} 1 \\ 3 \\ 1 \\ 1 \end{array}
ight]
ight\} \subset \mathbf{R}^4.$$

(a) Find an orthonormal basis of H.

(b) Compute the orthogonal projection of $[0, 2, 2, 4]^T$ on H.

- (c) Compute the distance from $[0, 2, 2, 4]^T$ to H.
- (d) Find a basis of H^{\perp} .

Solution:

(a) Gram-Schmidt: $\{1/\sqrt{2}[1,0,1,0]^T, 1/2[1,1,-1,1]^T, 1/\sqrt{6}[-1,2,1,0]^T\}$. (b) $[1,3,1,1]^T$. (c) $\sqrt{12}$.

(d) $\{[-1, -1, 1, 3]^T\}.$

Exercise 4 (15 = 3 + 3 + 6 + 3) Consider the linear map $T : \mathbf{R}^3 \to \mathbf{R}^3$ given by

$$T\begin{bmatrix} x\\ y\\ z\end{bmatrix} = \begin{bmatrix} 2x+y+z\\ -x-z\\ -x-y\end{bmatrix}.$$

- (a) Find the standard matrix M of T.
- (b) Show that $M^2 = M$.
- (c) Show that M is diagonalizable.

(d) Is there a subspace $W \subseteq \mathbf{R}^3$ such that $T = \operatorname{Proj}_W$?

Solution:

(a)

$$\begin{bmatrix} 2 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}.$$

(b) Easy computation.

(c) (Any projection is diagonalizable) Characteristic polynomial is $-(\lambda - 1)^2 \lambda$. The matrix is diagonalizable since E_1 has dimension 2.

(d) Null space is span of $[-1, 1, 1]^T$. This vector is not orthogonal to [2, -1, -1].

So, the answer is no.

Exercise 5 (20 pts)

True of false? No explanation required. Points = $3 \times \#$ correct - 10.

(1) Let A be an 6×5 matrix. Assume that the rank of A is 3. Then the dimension of the null space of A is 3.

(2) Let A, B be two diagonalizable matrices of the same size. Then AB is diagonalizable.

(3) Let H be a subspace of \mathbb{R}^n . Then there is an $n \times n$ matrix A such that the column space of A is equal to H.

(4) Let A be an $n \times n$ matrix and assume that \mathcal{B} is a basis of \mathbb{R}^n of eigenvectors of A. Then $[A]_{\mathcal{B}}$ is a diagonal matrix.

(5) If two matrices have the same characteristic polynomial, then they are similar. (6) Let H_1 and H_2 be subspaces of \mathbf{R}^n . Then the intersection $H_1 \cap H_2 = \{x \in \mathbf{R}^n : x \in H_1, x \in H_2\}$ is a subspace of \mathbf{R}^n .

(7) Let A, B be 3×3 matrices with $\det(A) = -1$, $\det(B) = 2$. Then $\det(A(-B)A^2) = 2$.

(8) Let A be an $n \times n$ matrix. Then there are only finitely many $a \in \mathbf{R}$ such that A - aI is not invertible.

(9) Every square matrix is diagonalizable over the complex numbers.

(10) Let A be an invertible $n \times n$ matrix. Then there are no $\mathbf{x} \in \mathbf{R}^n$ with $A\mathbf{x} = 0$.

Solution:

(1) False, it is 2.
 (2) False,

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right] \cdot \left[\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right] = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right].$$

(3) True, put a basis in the columns of the matrix and add extra 0 columns.

(4) True.

(5) False.

(6) True.

(7) True.

(8) True, characteristic polynomial has finite degree.

(9) False.

(10) False, always 0 vector.

4