Intro Linear Algebra 3A: final

Monday March 20 2017, 1:30-3.30 pm
There are 5 exercises, worth a total of $100=20+25+20+15+20$ points.
Non-graphical calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise $1(20=5+5+5+5 \mathrm{pts})$
For $x \in \mathbf{R}$ consider the matrix

$$
A_{x}=\left[\begin{array}{lll}
3 & 0 & 0 \\
1 & 4 & 1 \\
1 & x & 4
\end{array}\right]
$$

Set $B=A_{x}$ where $x=1$.
(a) Compute the characteristic polynomial of B and show that 3 and 5 are the eigenvalues of B.
(b) For each eigenvalue of B, compute a basis of the corresponding eigenspace of B.
(c) Is B diagonalizable? If so, find an invertible matrix P and a diagonal matrix D with $B=P D P^{-1}$.
(d) (hard) For which x is A_{x} diagonalizable over \mathbf{R} ?

Solution:

(a) $-(\lambda-3)^{2}(\lambda-5)$.
(b) E_{3} has basis $\left\{[-1,0,1]^{T},[-1,1,0]^{T}\right\}$. E_{5} has basis $\left\{[0,1,1]^{T}\right\}$.
(c) Yes, $D=\operatorname{diag}(3,3,5)$ and

$$
P=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

(d) The characteristic polynomial if $(3-\lambda) \cdot\left((4-\lambda)^{2}-x\right)$. Over \mathbf{R} : if $x<0$, then we don't see all eigenvalues, not diagonalizable. If $x>0$ then it has distinct eigenvalues unless $x=1$, but in the latter case we have shown it is diagonalizable. We only have to check $x=0$. In that case the matrix turns out not to be diagonalizable. Hence the matrix is diagonalizable for $x>0$.

Exercise $2(25=3+4+4+4+5+5 \mathrm{pts})$
For $x \in \mathbf{R}$ consider the matrix

$$
A_{x}=\left[\begin{array}{ccc}
1 & 0 & x \\
1 & x & x \\
1 & 3 & 1
\end{array}\right]
$$

(a) Compute A_{x}^{2} when $x=1$.
(b) Show that A_{x} is invertible for $x \neq 0,1$.
(c) For $x=0$ compute a basis for the null space and column space of A_{x}.
(d) For $x=1$, compute the rank and the dimension of the null space of A_{x}.
(e) Compute A_{x}^{-1} when $x=2$.
(f) (subtle) Set $\mathbf{v}=[0,1,3]^{T}$. Consider the equation $A_{x}\left[x_{1}, x_{2}, x_{3}\right]^{T}=\mathbf{v}$. For which x is there a solution with $x_{3}=1$?

Solution:

(a)

$$
\left[\begin{array}{lll}
2 & 3 & 2 \\
3 & 4 & 3 \\
5 & 6 & 5
\end{array}\right]
$$

(b) $\operatorname{det}\left(A_{x}\right)=x-x^{2}=x(1-x)$. So invertible when $x \neq 0,1$.
(c) Column space: $\left\{[1,1,1]^{T},[0,0,3]^{T}\right\}$. Null space $\left\{[0,1,-3]^{T}\right\}$.
(d) Rank 2, dimension null space 1.
(e)

$$
\left[\begin{array}{rrr}
2 & -3 & 2 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{3}{2} & -1
\end{array}\right]
$$

(f) If $x \neq 0,1$ we can use Cramer's rule $1=(3 x-3) /\left(x-x^{2}\right)$, and this has solution $x=-3,1$. The valid solution is $x=-3$. We need to check the non invertible cases separately. It turns out that $x=-3,1$ are the only cases in the end.

Exercise $3(20=8+4+3+5 \mathrm{pts})$
Let

$$
H=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
1 \\
1
\end{array}\right]\right\} \subset \mathbf{R}^{4}
$$

(a) Find an orthonormal basis of H.
(b) Compute the orthogonal projection of $[0,2,2,4]^{T}$ on H.
(c) Compute the distance from $[0,2,2,4]^{T}$ to H.
(d) Find a basis of H^{\perp}.

Solution:

(a) Gram-Schmidt: $\left\{1 / \sqrt{2}[1,0,1,0]^{T}, 1 / 2[1,1,-1,1]^{T}, 1 / \sqrt{6}[-1,2,1,0]^{T}\right\}$.
(b) $[1,3,1,1]^{T}$.
(c) $\sqrt{12}$.
(d) $\left\{[-1,-1,1,3]^{T}\right\}$.

Exercise $4(15=3+3+6+3)$
Consider the linear map $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 x+y+z \\
-x-z \\
-x-y
\end{array}\right]
$$

(a) Find the standard matrix M of T.
(b) Show that $M^{2}=M$.
(c) Show that M is diagonalizable.
(d) Is there a subspace $W \subseteq \mathbf{R}^{3}$ such that $T=\operatorname{Proj}_{W}$?

Solution:

(a)

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 0 & -1 \\
-1 & -1 & 0
\end{array}\right]
$$

(b) Easy computation.
(c) (Any projection is diagonalizable) Characteristic polynomial is $-(\lambda-1)^{2} \lambda$. The matrix is diagonalizable since E_{1} has dimension 2.
(d) Null space is span of $[-1,1,1]^{T}$. This vector is not orthogonal to $[2,-1,-1]$. So, the answer is no.

Exercise 5 (20 pts)
True of false? No explanation required. Points $=3 \times \#$ correct -10 .
(1) Let A be an 6×5 matrix. Assume that the rank of A is 3 . Then the dimension of the null space of A is 3 .
(2) Let A, B be two diagonalizable matrices of the same size. Then $A B$ is diagonalizable.
(3) Let H be a subspace of \mathbf{R}^{n}. Then there is an $n \times n$ matrix A such that the column space of A is equal to H.
(4) Let A be an $n \times n$ matrix and assume that \mathcal{B} is a basis of \mathbf{R}^{n} of eigenvectors of
A. Then $[A]_{\mathcal{B}}$ is a diagonal matrix.
(5) If two matrices have the same characteristic polynomial, then they are similar.
(6) Let H_{1} and H_{2} be subspaces of \mathbf{R}^{n}. Then the intersection $H_{1} \cap H_{2}=\left\{x \in \mathbf{R}^{n}\right.$:
$\left.x \in H_{1}, x \in H_{2}\right\}$ is a subspace of \mathbf{R}^{n}.
(7) Let A, B be 3×3 matrices with $\operatorname{det}(A)=-1$, $\operatorname{det}(B)=2$. Then $\operatorname{det}\left(A(-B) A^{2}\right)=$ 2.
(8) Let A be an $n \times n$ matrix. Then there are only finitely many $a \in \mathbf{R}$ such that $A-a I$ is not invertible.
(9) Every square matrix is diagonalizable over the complex numbers.
(10) Let A be an invertible $n \times n$ matrix. Then there are no $\mathbf{x} \in \mathbf{R}^{\mathbf{n}}$ with $A \mathbf{x}=0$.

Solution:

(1) False, it is 2.
(2) False,

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] .
$$

(3) True, put a basis in the columns of the matrix and add extra 0 columns.
(4) True.
(5) False.
(6) True.
(7) True.
(8) True, characteristic polynomial has finite degree.
(9) False.
(10) False, always 0 vector.

