Intro Linear Algebra 3A: midterm 2
Monday May 212018
There are 6 exercises, worth a total of 37 points.
No calculators allowed. No books or notes allowed.
Provide computations and or explanations, unless stated otherwise.

Name:
Student ID:

Exercise 1 (5 pts)
Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
1 & 3 & 1 \\
-2 & 3 & 1
\end{array}\right]
$$

(a) Compute the determinant $\operatorname{det}(A)$ of A. (2 points)
(b) Compute A^{-1} the inverse of A using Cramer's rule (determinants). (3 points)

Solution:

(a) 6
(b)

$$
A^{-1}=\left[\begin{array}{rrr}
0 & \frac{1}{3} & -\frac{1}{3} \\
\frac{1}{2} & -\frac{1}{6} & \frac{1}{6} \\
-\frac{3}{2} & \frac{7}{6} & -\frac{1}{6}
\end{array}\right]
$$

Exercise 2 (7 pts)
Consider the matrix

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 0 & 1 \\
-1 & 1 & 0 & 1 \\
1 & 1 & 2 & 1 \\
0 & 2 & 2 & 1
\end{array}\right]
$$

with reduced row echelon form

$$
B=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis of the null space $\operatorname{Nul}(A)$ of A. (1 points)
(b) Compute the dimension of $\operatorname{Nul}(A)$. (1 point)
(c) Compute a basis of the column space $\operatorname{Col}(A)$ of A. (1 point)
(d) What is the rank of A ? (1 point)
(e) Find a vector $\mathbf{b} \in \mathbf{R}^{4}$ with the following property: if we replace the last column of A by \mathbf{b}, the new matrix has rank 2. Explain your answer. (2 points)
(f) State the rank theorem. (1 point)

Solution:

(a) $\left\{[-1,-1,1]^{T}\right\}$.
(b) 1 (c) $\left\{[1,-1,1,0]^{T},[-1,1,1,2]^{T},[1,1,1,1]^{T}\right\}$
(d) 3
(e) $\mathbf{b}=[0,0,2,2]^{T}$, there will only be 2 pivots in that case.
(f) Number of columns is equal to rank plus dimension of column space.

Exercise 3 (3 pts)
Given that

$$
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=5
$$

compute

$$
\operatorname{det}\left[\begin{array}{ccc}
a & 2 b & c \\
d & 2 e & f \\
g & 2 h & i
\end{array}\right], \operatorname{det}\left[\begin{array}{ccc}
3 a+d & 3 b+e & 3 c+f \\
d & e & f \\
g & h & i
\end{array}\right], \operatorname{det}\left[\begin{array}{ccc}
d & e & f \\
g & h & i \\
a & b & c
\end{array}\right]
$$

No explanation required.

Solution:

10, 15, 5.
Exercise 4 (4 pts)
Let $c \in \mathbf{R}$. Consider the matrix

$$
A_{c}=\left[\begin{array}{ccc}
1 & c & 2 \\
-1 & 0 & 3 \\
1 & 1 & 1
\end{array}\right]
$$

(a) Compute $\operatorname{det}\left(A_{c}\right) \cdot(2$ points)
(b) For which c is A_{c} invertible? Explain. (1 point)
(c) If A_{c} is invertible, what is the rank of A_{c} ? (1 point)

Solution:

(a) $4 c-5$
(b) $c \neq 5 / 4$
(c) 3

Exercise 5 (8 pts)
Let

$$
A=\left[\begin{array}{ccc}
-1 & 0 & -2 \\
0 & 2 & 0 \\
3 & 0 & 4
\end{array}\right]
$$

(a) Compute the characteristic polynomial of A. (2 points)
(b) Show that the eigenvalues of A are 1 and 2. (1 point)
(c) For each eigenvector of A compute a basis of the corresponding eigenspace. (3 points)
(d) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. (2 points $)$

Solution:

(a) $-(\lambda-1)(\lambda-2)^{2}$.
(b) See a.
(c) E_{1} has basis $\left\{[-1,0,1]^{T}\right\}$ and E_{2} has basis $\left\{[0,1,0]^{T},[-2,0,3]^{T}\right\}$.
(d) Yes,

$$
D=\operatorname{diag}(1,2,2), P=\left[\begin{array}{ccc}
-1 & 0 & -2 \\
0 & 1 & 0 \\
1 & 0 & 3
\end{array}\right]
$$

Exercise 6 (10 pts)
True or false? No explanation required. Each question is worth 1 point.
(1) Let A be an $m \times n$ matrix with $m>n$. Then $\operatorname{dim} \operatorname{Nul}(A)>0$.
(2) Let A be a 3×3 matrix with $\operatorname{det}(A)=2$. Then $\operatorname{det}\left(A \cdot A^{T} \cdot 2 A^{-1}\right)=4$.
(3) The area of the parallelogram determined by the points $(-2,-2),(0,3),(4,-1)$ and $(6,4)$ is 28 .
(4) Let A be an $n \times n$ matrix. Then A is invertible if and only if 0 is not an eigenvalue of A.
(5) Let A be an $n \times n$ matrix and let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be n distinct eigenvectors of A. Then A is diagonalizable.
(6) Every upper triangular matrix is diagonalizable.
(7) Let A be an $n \times n$ matrix. Then A is invertible if and only if the columns of A form a basis of \mathbf{R}^{n}.
(8) Let A, B be $n \times n$ matrices. Then $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
(9) There is an $n \times n$ matrix with $n+1$ different eigenvalues.
(10) Any line in \mathbf{R}^{3} is a subspace of \mathbf{R}^{3}.

Solution:

(1) False
(2) False
(3) True
(4) True
(5) False
(6) False
(7) True
(8) False
(9) False
(10) False

