3A: 1st midterm example solutions

October 20, 2015
Remark: only short solutions are provided. During the exam, also give the computations. Hint: you can usually check if your answers are correct very quickly!

Exercise 1

(a) The most common answer would be $x_{4}[-1,0,-1,1,0]^{T}+x_{5}[-1 / 2,-1 / 2,1 / 2,0,1]^{T}+$ $[-1 / 2,-1 / 2,3 / 2,0,0]^{T}$ (obtained from reduced row echelon form). Another possible answer is $x_{4}[1,0,1,-1,0]^{T}+x_{5}[-1,-1,1,0,2]^{T}+[0,0,1,0,-1]^{T}$ (this representation is not unique).
(b) From (a) it follows that the map is not one-to-one. The reduced row echelon form shows that map is not onto (there is a zero row).

Exercise 2

(a)

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(b) The reduced row echelon form is:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

No zero rows: onto, no free variables: one-to-one.
(c)

$$
C A=\left[\begin{array}{ccc}
1 & 8 & 6 \\
-1 & 0 & -2
\end{array}\right]
$$

(d) Solve linear equations to find $S\left(e_{1}\right), S\left(e_{2}\right)$ and $S\left(e_{3}\right)$. The answer is:

$$
B=\frac{1}{2}\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & 1 & -1
\end{array}\right]
$$

Exercise 3

(a) False. If $m>n$, then m vectors in \mathbf{R}^{n} are always linearly dependent (theorem in book).
(b) False. The map with the matrix $[0,0,0,0,0]$ is not surjective.
(c) False. If linear, then $T(0)=0$, but $T(0)=[0,0,1]$.
(d) False: If linear, then $T\left([1,1,0]^{T}\right)=T([1,0,0])+T([0,1,0])$, and this property does not hold.

